Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Thresholds versus fractional expectation-thresholds.(English)Zbl 1472.05132

Summary: Proving a conjecture ofM. Talagrand [in: Proceedings of the 42nd annual ACM symposium on theory of computing, STOC ’10. Cambridge, MA, USA, June 5–8, 2010. New York, NY: Association for Computing Machinery (ACM). 13–36 (2010;Zbl 1293.60014)], a fractional version of the “expectation-threshold” conjecture ofJ. Kahn andG. Kalai [Comb. Probab. Comput. 16, No. 3, 495–502 (2007;Zbl 1118.05093)], we show that \(p_c(\mathcal{F})=O(q_f(\mathcal{F})\log\ell(\mathcal{F}))\) for any increasing family \(\mathcal{F}\) on a finite set \(X\), where \(p_c(\mathcal{F})\) and \(q_f(\mathcal{F})\) are the threshold and “fractional expectation-threshold” of \(\mathcal{F}\), and \(\ell(\mathcal{F})\) is the maximum size of a minimal member of \(\mathcal{F}\). This easily implies several heretofore difficult results and conjectures in probabilistic combinatorics, including thresholds for perfect hypergraph matchings [A. Johansson et al., Random Struct. Algorithms 33, No. 1, 1–28 (2008;Zbl 1146.05040)], bounded degree spanning trees [R. Montgomery, Adv. Math. 356, Article ID 106793, 92 p. (2019;Zbl 1421.05080)], and bounded degree graphs (new). We also resolve (and vastly extend) the “axial” version of the random multi-dimensional assignment problem (earlier considered by Martin-Mézard-Rivoire andA. Frieze andG. B. Sorkin [Random Struct. Algorithms 46, No. 1, 160–196 (2015;Zbl 1347.60141)]). Our approach builds on a recent breakthrough ofR. Alweiss et al. [in: Proceedings of the 52nd annual ACM SIGACT symposium on theory of computing, STOC ’20, Chicago, IL, USA, June 22–26, 2020. New York, NY: Association for Computing Machinery (ACM). 624–630 (2020;Zbl 1553.05168)] on the Erdő-Rado “Sunflower Conjecture”.

MSC:

05C80 Random graphs (graph-theoretic aspects)
60D05 Geometric probability and stochastic geometry
60G15 Gaussian processes

Cite

References:

[1]Alon, Noga; F\"{u}redi, Zolt\'{a}n, Spanning subgraphs of random graphs, Graphs Combin.. Graphs and Combinatorics, 8, 91-94 (1992) ·Zbl 0767.05082 ·doi:10.1007/BF01271712
[2]Alweiss, R.; Lovett, S.; Wu, K.; Zhang, J., Improved bounds for the sunflower lemma. Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, 624-630 (2020) ·Zbl 1553.05168 ·doi:10.1145/3357713.3384234}
[3]Bollob\'{a}s, B., Random {G}raphs, Cambridge Studies in Advanced Mathematics, 73, xviii+498 pp. (2001) ·Zbl 0979.05003 ·doi:10.1017/CBO9780511814068
[4]Bollob\'{a}s, B.; Thomason, A., Threshold functions, Combinatorica. Combinatorica. An International Journal of the J\'{a}nos Bolyai Mathematical Society, 7, 35-38 (1987) ·Zbl 0648.05048 ·doi:10.1007/BF02579198
[5]Dudek, Andrzej; Frieze, Alan; Loh, Po-Shen; Speiss, Shelley, Optimal divisibility conditions for loose {H}amilton cycles in random hypergraphs, Electron. J. Combin.. Electronic Journal of Combinatorics, 19, 44-17 (2012) ·Zbl 1266.05152 ·doi:10.37236/2523
[6]Erd\H{o}s, P.; Rado, R., Intersection theorems for systems of sets, J. London Math. Soc.. The Journal of the London Mathematical Society, 35, 85-90 (1960) ·Zbl 0103.27901 ·doi:10.1112/jlms/s1-35.1.85
[7]Erd\H{o}s, P.; R\'{e}nyi, A., On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutat\'{o} Int. K\"{o}zl.. A Magyar Tudom\'{a}nyos Akad\'{e}mia. Matematikai Kutat\'{o} Int\'{e}zet\'{e}nek K\"{o}zlem\'{e}nyei, 5, 17-61 (1960) ·Zbl 0103.16301
[8]Ferber, Asaf; Kronenberg, Gal; Luh, Kyle, Optimal threshold for a random graph to be 2-universal, Trans. Amer. Math. Soc.. Transactions of the American Mathematical Society, 372, 4239-4262 (2019) ·Zbl 1420.05161 ·doi:10.1090/tran/7727
[9]Ferber, Asaf; Luh, Kyle; Nguyen, Oanh, Embedding large graphs into a random graph, Bull. Lond. Math. Soc.. Bulletin of the London Mathematical Society, 49, 784-797 (2017) ·Zbl 1372.05199 ·doi:10.1112/blms.12066
[10]Friedgut, Ehud, Sharp thresholds of graph properties, and the {\(k\)}-sat problem, J. Amer. Math. Soc.. Journal of the American Mathematical Society, 12, 1017-1054 (1999) ·Zbl 0932.05084 ·doi:10.1090/S0894-0347-99-00305-7
[11]Friedgut, Ehud, Hunting for sharp thresholds, Random Structures Algorithms. Random Structures & Algorithms, 26, 37-51 (2005) ·Zbl 1059.05092 ·doi:10.1002/rsa.20042
[12]Frieze, Alan; Sorkin, Gregory B., Efficient algorithms for three-dimensional axial and planar random assignment problems, Random Structures Algorithms. Random Structures & Algorithms, 46, 160-196 (2015) ·Zbl 1347.60141 ·doi:10.1002/rsa.20525
[13]Heckel, A., Random triangles in random graphs (2018)
[14]Janson, Svante; {\L}uczak, Tomasz; Rucinski, Andrzej, Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, xii+333 pp. (2000) ·Zbl 0968.05003 ·doi:10.1002/9781118032718
[15]Johansson, Anders; Kahn, Jeff; Vu, Van, Factors in random graphs, Random Structures Algorithms. Random Structures & Algorithms, 33, 1-28 (2008) ·Zbl 1146.05040 ·doi:10.1002/rsa.20224
[16]Kahn, Jeff, Asymptotics for {S}hamir’s problem (2019)
[17]Kahn, Jeff; Kalai, Gil, Thresholds and expectation thresholds, Combin. Probab. Comput.. Combinatorics, Probability and Computing, 16, 495-502 (2007) ·Zbl 1118.05093 ·doi:10.1017/S0963548307008474
[18]Karp, Richard M., Reducibility among combinatorial problems. Complexity of Computer Computations, 85-103 (1972) ·Zbl 1467.68065 ·doi:10.1007/978-1-4684-2001-2_9
[19]Keevash, Peter, Counting designs, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 20, 903-927 (2018) ·Zbl 1386.05015 ·doi:10.4171/JEMS/779
[20]Krivelevich, Michael, Embedding spanning trees in random graphs, SIAM J. Discrete Math.. SIAM Journal on Discrete Mathematics, 24, 1495-1500 (2010) ·Zbl 1221.05283 ·doi:10.1137/100805753
[21]Linial, Nathan; Luria, Zur, An upper bound on the number of {S}teiner triple systems, Random Structures Algorithms. Random Structures & Algorithms, 43, 399-406 (2013) ·Zbl 1278.05030 ·doi:10.1002/rsa.20487
[22]van Lint, J. H.; Wilson, R. M., A Course in Combinatorics, xiv+602 pp. (2001) ·Zbl 0980.05001 ·doi:10.1017/CBO9780511987045
[23]Lord, N., Binomial averages when the mean is an integer, Math. Gaz., 94, 331-332 (2010) ·doi:10.1017/S0025557200006690
[24]Montgomery, Richard, Spanning trees in random graphs, Adv. Math.. Advances in Mathematics, 356, 106793-92 (2019) ·Zbl 1421.05080 ·doi:10.1016/j.aim.2019.106793
[25]Rao, Anup, Coding for sunflowers, Discrete Anal.. Discrete Analysis, 2-8 (2020) ·Zbl 1450.05092 ·doi:10.19086/da
[26]Riordan, O., Random cliques in random graphs (2018)
[27]Talagrand, M., Are all sets of positive measure essentially convex?. Geometric Aspects of Functional Analysis, Oper. Theory Adv. Appl., 77, 295-310 (1995) ·Zbl 0835.60003 ·doi:10.1007/978-3-0348-9090-8_25
[28]Talagrand, Michel, The Generic Chaining, Springer Monographs in Mathematics, viii+222 pp. (2005) ·Zbl 1075.60001 ·doi:10.1007/3-540-27499-5
[29]Talagrand, Michel, Selector processes on classes of sets, Probab. Theory Related Fields. Probability Theory and Related Fields, 135, 471-486 (2006) ·Zbl 1097.60019 ·doi:10.1007/s00440-004-0350-2
[30]Talagrand, Michel, Are many small sets explicitly small?. S{TOC}’10—{P}roceedings of the 2010 {ACM} {I}nternational {S}ymposium on {T}heory of {C}omputing, 13-35 (2010) ·Zbl 1293.60014 ·doi:10.1145/1806689.1806693
[31]Talagrand, Michel, Upper and Lower Bounds for Stochastic Processes, Ergeb. Math. Grenzgeb., 60, xvi+626 pp. (2014) ·Zbl 1293.60001 ·doi:10.1007/978-3-642-54075-2
[32]blog post; available on author’s webpage, The sunflower lemma via {S}hannon entropy
[33]Wilson, Richard M., Nonisomorphic {S}teiner triple systems, Math. Z.. Mathematische Zeitschrift, 135, 303-313 (1973/74) ·Zbl 0264.05009 ·doi:10.1007/BF01215371
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp