Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Consistency of an alternative CPT-odd and Lorentz-violating extension of QED.(English)Zbl 1471.81062

Summary: We investigate an alternative CPT-odd Lorentz-breaking QED which includes the Carroll-Field-Jackiw (CFJ) term of the Standard Model Extension (SME), writing the gauge sector in the action in a Palatini-like form, in which the vectorial field and the field-strength tensor are treated as independent entities. Interestingly, this naturally induces a Lorentz-violating mass term in the classical action. We study physical consistency aspects of the model both at classical and quantum levels.

MSC:

81T05 Axiomatic quantum field theory; operator algebras
81V10 Electromagnetic interaction; quantum electrodynamics
81V22 Unified quantum theories
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81R40 Symmetry breaking in quantum theory

Cite

References:

[1]Robles, P. and Claro, F., Eur. J. Phys.33, 1217 (2012). ·Zbl 1266.81168
[2]Tu, L. C., Luo, J. and Gillies, G. T., Rep. Prog. Phys.68, 77 (2005).
[3]Goldhaber, A. S. and Nieto, M. M., Rev. Mod. Phys.82, 939 (2010).
[4]Spavieri, G., Quintero, J., Gillies, G. T. and Rodriguez, M., Eur. Phys. J. D61, 531 (2011).
[5]Wei, J.-J. and Wu, X.-F., J. Cosmol. Astropart. Phys.1807, 045 (2018).
[6]Shao, L. and Zhang, B., Phys. Rev. D95, 123010 (2017).
[7]Bonetti, L., Ellis, J., Mavromatos, N. E., Sakharov, A. S., Sarkisyan-Grinbaum, E. K. and Spallicci, A. D. A. M., Phys. Lett. B768, 326 (2017).
[8]Yang, Y.-P. and Zhang, B., Astrophys. J.842, 23 (2017).
[9]Wei, J.-J., Zhang, E.-K., Zhang, S.-B. and Wu, X.-F., Res. Astron. Astrophys.17, 13 (2017).
[10]Zhang, B., Chai, Y.-T., Zou, Y.-C. and Wu, X.-F., J. High Energy Astrophys.11-12, 20 (2016).
[11]Bonetti, L., Ellis, J., Mavromatos, N. E., Sakharov, A. S., Sarkisyan-Grinbaum, E. K. G. and Spallicci, A. D. A. M., Phys. Lett. B757, 548 (2016).
[12]Wu, X.-F.et al., Astrophys. J.822, L15 (2016).
[13]Retinò, A., Spallicci, A. D. A. M. and Vaivads, A., Astropart. Phys.82, 49 (2016).
[14](Tanabashi, M.et al.), Phys. Rev. D98, 030001 (2018).
[15]Ryutov, D. D., Plasma Phys. Contr. Fus.39, A73 (1997).
[16]Ryutov, D. D., Plasma Phys. Contr. Fus.49, B429 (2007).
[17]Davis, L., Goldhaber, A. S. and Nieto, M. M., Phys. Rev. Lett.35, 1402 (1975).
[18]Chibisov, G., Usp. Fiz. Nauk19, 551 (1976).
[19]Bonetti, L., dos Santos Filho, L. R., Helayël-Neto, J. A. and Spallicci, A. D. A. M., Phys. Lett. B764, 203 (2017). ·Zbl 1369.81051
[20]Bonetti, L., dos Santos, L. R., Helayël-Neto, J. A. and Spallicci, A. D. A. M., Eur. Phys. J. C78, 811 (2018).
[21]El-Menoufi, B. M. and Donoghue, J. F., Phys. Rev. D87, 036005 (2013).
[22]Endres, M. G., Shindler, A., Tiburzi, B. C. and Walker-Loud, A., LATTICE 2015, 078 (2016).
[23]Vyas, V. M. and Panigrahi, P. K., Phys. Lett. B771, 588 (2017). ·Zbl 1372.81162
[24]Emelyanov, S., Nucl. Phys. B919, 110 (2017). ·Zbl 1361.83014
[25]Kostelecký, V. A. and Samuel, S., Phys. Rev. Lett.66, 1811 (1991).
[26]Alencar, G., Muniz, C. R., Landim, R. R., Jardim, I. C. and Costa Filho, R. N., Phys. Lett. B759, 138 (2016). ·Zbl 1367.83084
[27]Prokopec, T., Tornkvist, O. and Woodard, R. P., Phys. Rev. Lett.89, 101301 (2002).
[28]Kostelecký, V. A. and Samuel, S., Phys. Rev. D39, 683 (1989).
[29]Kostelecký, V. A. and Samuel, S., Phys. Rev. D40, 1886 (1989).
[30]Doplicher, S., Fredenhagen, K. and Roberts, J. E., Commun. Math. Phys.172, 187 (1995). ·Zbl 0847.53051
[31]Collins, J., Perez, A., Sudarsky, D., Urrutia, L. and Vucetich, H., Phys. Rev. Lett.93, 191301 (2004).
[32]Horava, P., Phys. Rev. D79, 084008 (2009).
[33]Colladay, D. and Kostelecký, V. A., Phys. Rev. D58, 116002 (1998).
[34]Colladay, D. and Kostelecký, V. A., Phys. Rev. D55, 6760 (1997).
[35]Kostelecký, V. A. and Russell, N., Rev. Mod. Phys.83, 11 (2011).
[36]Carroll, S. M., Field, G. B. and Jackiw, R., Phys. Rev. D41, 1231 (1990).
[37]Carroll, S. M. and Field, G. B., Phys. Rev. Lett.79, 2394 (1997).
[38]Coleman, S. R. and Glashow, S. L., Phys. Rev. D59, 116008 (1999).
[39]Kostelecký, V. A. and Lane, C. D., Phys. Rev. D60, 116010 (1999).
[40]Kostelecký, V. A., Phys. Rev. D61, 016002 (2000).
[41]Bertolami, O. and Carvalho, C. S., Phys. Rev. D61, 103002 (2000).
[42]Bluhm, R. and Kostelecký, V. A., Phys. Rev. Lett.84, 1381 (2000).
[43]Bluhm, R., Kostelecký, V. A. and Lane, C. D., Phys. Rev. Lett.84, 1098 (2000).
[44]Jackiw, R. and Kostelecký, V. A., Phys. Rev. Lett.82, 3572 (1999).
[45]Andrianov, A. A. and Soldati, R., Phys. Lett. B435, 449 (1998).
[46]Adam, C. and Klinkhamer, F. R., Nucl. Phys. B607, 247 (2001). ·Zbl 0969.81575
[47]Baêta Scarpelli, A. P., Belich, H., Boldo, J. L. and Helayël-Neto, J. A., Phys. Rev. D67, 085021 (2003).
[48]Casana, R., Ferreira, M. M. Jr. and Moreira, R. P. M., Eur. Phys. J. C72, 2070 (2012).
[49]Arnowitt, R. L., Deser, S. and Misner, C. W., Gen. Relativ. Gravit.40, 1997 (2008). ·Zbl 1152.83320
[50]Stueckelberg, E. C. G., Helv. Phys. Acta11, 225 (1938).
[51]Stueckelberg, E. C. G., Helv. Phys. Acta11, 299 (1938).
[52]Cambiaso, M., Lehnert, R. and Potting, R., Phys. Rev. D85, 085023 (2012).
[53]Fargnoli, H. G., Brito, L. C. T., Baêta Scarpelli, A. P. and Sampaio, M., Phys. Rev. D90, 085016 (2014).
[54]Kostelecký, V. A. and Mewes, M., Phys. Rev. D80, 015020 (2009).
[55]Gomes, Y. M. P. and Malta, P. C., Phys. Rev. D94, 025031 (2016).
[56]Gabadadze, G. and Grisa, L., Phys. Lett. B617, 124 (2005). ·Zbl 1247.83148
[57]Dvali, G., Papucci, M. and Schwartz, M. D., Phys. Rev. Lett.94, 191602 (2005).
[58]Altschul, B., Phys. Rev. D73, 036005 (2006).
[59]Altschul, B., Phys. Rev. D86, 045008 (2012).
[60]Veltman, M., Quantum theory of gravitation, in Methods in Field Theory, eds. Bailian, R. and Zinn-Justin, J. (North-Holland Publishing Company and World Scientific Publishing Co. Ltd., 1981).
[61]Bonneau, G., Costa, L. C. and Tomazelli, J. L., Int. J. Theor. Phys.47, 1764 (2008). ·Zbl 1148.83300
[62]Baêta Scarpelli, A. P., Mariz, T., Nascimento, J. R. and Petrov, A. Yu., Eur. Phys. J. C73, 2526 (2013).
[63]Battistel, O. A., Mota, A. L. and Nemes, M. C., Mod. Phys. Lett. A13, 1597 (1998).
[64]Battistel, O. A. and Nemes, M. C., Phys. Rev. D59, 055010 (1999).
[65]Cherchiglia, A. L., Sampaio, M. and Nemes, M. C., Int. J. Mod. Phys. A26, 2591 (2011). ·Zbl 1247.81309
[66]Altschul, B., Phys. Rev. D69, 125009 (2004).
[67]Baêta Scarpelli, A. P., Sampaio, M., Nemes, M. C. and Hiller, B., Eur. Phys. J. C56, 571 (2008). ·Zbl 1189.81243
[68]Kostelecký, V. A., Lane, C. D. and Pickering, A. G. M., Phys. Rev. D65, 056006 (2002).
[69]D. J. Toms, Quantization of the minimal and non-minimal vector field in curved space, arXiv:1509.05989.
[70]Buchbinder, I. L., Netto, T. P. and Shapiro, I. L., Phys. Rev. D95, 085009 (2017).
[71]Ruf, M. S. and Steinwachs, C. F., Phys. Rev. D98, 025009 (2018).
[72]Garcia-Recio, C. and Salcedo, L. L., Eur. Phys. J. C79, 438 (2019).
[73]de Berredo-Peixoto, G., Helayël-Neto, J. A. and Shapiro, I. L., J. High Energy Phys.0002, 003 (2000). ·Zbl 0961.81053
[74]Shapiro, I. L., Phys. Rep.357, 113 (2002). ·Zbl 0977.83072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp