Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Random walks avoiding their convex hull with a finite memory.(English)Zbl 1471.60065

Summary: Fix integers \(d \geq 2\) and \(k \geq d - 1\). Consider a random walk \(X_0, X_1, \ldots\) in \(\mathbb{R}^d\) in which, given \(X_0, X_1, \ldots, X_n (n \geq k)\), the next step \(X_{n + 1}\) is uniformly distributed on the unit ball centred at \(X_n\), but conditioned that the line segment from \(X_n\) to \(X_{n + 1}\) intersects the convex hull of \(\{0, X_{n - k}, \ldots, X_n \}\) only at \(X_n\). For \(k = \infty\) this is a version of the model introduced by Angel et al., which is conjectured to be ballistic, i.e., to have a limiting speed and a limiting direction. We establish ballisticity for the finite-\(k\) model, and comment on some open problems. In the case where \(d = 2\) and \(k = 1\), we obtain the limiting speed explicitly: it is \(8/(9 \pi^2)\).

MSC:

60G50 Sums of independent random variables; random walks
60K35 Interacting random processes; statistical mechanics type models; percolation theory
52A22 Random convex sets and integral geometry (aspects of convex geometry)

Cite

References:

[1]Angel, O.; Benjamini, I.; Viràg, B., Random walks that avoid their past convex hull, Electron. Commun. Probab., 8, 6-16 (2003) ·Zbl 1009.60085
[2]Barber, M. N.; Ninham, B. W., Random and Restricted Walks: Theory and Applications (1970), Gordon and Breach: Gordon and Breach New York ·Zbl 0232.60048
[3]Baur, E.; Bertoin, J., Elephant random walks and their connection to Pólya-type urns, Phys. Rev. E, 94, Article 052134 pp. (2016)
[4]Beffara, V.; Friedli, S.; Velenik, Y., Scaling limit of the prudent walk, Electron. Commun. Probab., 15, 44-58 (2010) ·Zbl 1201.60029
[5]Benjamini, I.; Wilson, D. B., Excited random walk, Electron. Commun. Probab., 8, 86-92 (2003) ·Zbl 1060.60043
[6]Bercu, B., A martingale approach for the elephant random walk, J. Phys. A, 81, Article 015201 pp. (2018) ·Zbl 1392.60038
[7]Bousquet-Mélou, M., Families of prudent self-avoiding walks, J. Combin. Theory Ser. A, 117, 313-344 (2010) ·Zbl 1228.05026
[8]Chen, A.; Renshaw, E., The Gillis-Domb-Fisher correlated random walk, J. Appl. Probab., 29, 792-813 (1992) ·Zbl 0768.60058
[9]Comets, F.; Menshikov, M. V.; Volkov, S.; Wade, A. R., Random walk with barycentric self-interaction, J. Stat. Phys., 143, 855-888 (2011) ·Zbl 1232.82007
[10]Cruise, J. R.; Wade, A. R., The critical greedy server on the integers is recurrent, Ann. Appl. Probab., 29, 1233-1261 (2019) ·Zbl 1425.60076
[11]Durrett, R., Probability: Theory and Examples (2010), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 1202.60001
[12]Foss, S.; Rolla, L.; Sidoravicius, V., Greedy walk on the real line, Ann. Probab., 43, 1399-1418 (2015) ·Zbl 1327.60176
[13]Gut, A.; Stadtmüller, U., Variations of the elephant random walk (2018), Preprint arXiv:1812.01915
[14]Kurkova, I. A.; Menshikov, M. V., Greedy algorithm \(\mathbf{Z}^1\) case, Markov Process. Related Fields, 3, 243-259 (1997) ·Zbl 0935.60080
[15]Lindvall, T., Lectures on the Coupling Method (1992), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York ·Zbl 0760.60078
[16]Madras, N.; Slade, G., (The Self-Avoiding Walk. The Self-Avoiding Walk, Modern Birkhäuser Classics (2013)), reprint of the 1993 original ·Zbl 1254.01051
[17]Menshikov, M.; Popov, S.; Wade, A., Non-Homogeneous Random Walks (2016), Cambridge University Press: Cambridge University Press Cambridge
[18]Meyn, S. P.; Tweedie, R. L., Markov Chains and Stochastic Stability (2009), Cambridge University Press: Cambridge University Press Cambridge ·Zbl 0925.60001
[19]Mountford, T.; Tarrès, P., An asymptotic result for Brownian polymers, Ann. Inst. Henri Poincaré Probab. Stat., 44, 29-46 (2008) ·Zbl 1175.60084
[20]Norris, J. R.; Rogers, L. C.G.; Williams, D., Self-avoiding random walk: A Brownian motion model with local time drift, Probab. Theory Related Fields, 74, 271-287 (1987) ·Zbl 0611.60052
[21]Pemantle, R., A survey of random processes with reinforcement, Probab. Surv., 4, 1-79 (2007) ·Zbl 1189.60138
[22]Pétrélis, N.; Sun, R.; Torri, N., Scaling limit of the uniform prudent walk, Electron. J. Probab., 22, 19 (2017), paper no. 66 ·Zbl 1377.82028
[23]Rolla, L.; Sidoravicius, V., Stability of the greedy algorithm on the circle, Comm. Pure Appl. Math., 70, 1961-1986 (2017) ·Zbl 1374.60186
[24]Rolla, L.; Sidoravicius, V.; Tournier, L., Greedy clearing of persistent Poissonian dust, Stochastic Process. Appl., 124, 3496-3506 (2014) ·Zbl 1297.60032
[25]Smouse, P. E.; Focardi, S.; Moorcroft, P. R.; Kie, J. G.; Forester, J. D.; Morales, J. M., Stochastic modelling of animal movement, Phil. Trans. R. Soc. B, 365, 2201-2211 (2010)
[26]Tóth, B., The “true” self-avoiding walk with bond repulsion on \(\mathbb{Z} \): Limit theorems, Ann. Probab., 23, 1523-1556 (1995) ·Zbl 0852.60083
[27]Tóth, B., Self-interacting random motions—a survey, (Random Walks (Budapest, 1998). Random Walks (Budapest, 1998), Bolyai Soc. Math. Stud., vol. 9 (1998)), 349-384 ·Zbl 0953.60027
[28]Tóth, B.; Werner, W., The true self-repelling motion, Probab. Theory Related Fields, 111, 375-452 (1998) ·Zbl 0912.60056
[29]Zerner, M., On the speed of a planar random walk avoiding its past convex hull, Ann. Inst. Henri Poincaré Probab. Stat., 41, 887-900 (2005) ·Zbl 1073.60100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp