32W20 | Complex Monge-Ampère operators |
32U05 | Plurisubharmonic functions and generalizations |
32Q15 | Kähler manifolds |
[1] | E. Bedford and B. A. Taylor,The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44. ·Zbl 0315.31007 |
[2] | E. Bedford and B. A. Taylor,A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40. ·Zbl 0547.32012 |
[3] | R. J. Berman, S. Boucksom, V. Guedj and A. Zeriahi,A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 179-245. ·Zbl 1277.32049 |
[4] | Z. Błocki and S. Kołodziej,On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007), 2089-2093. ·Zbl 1116.32024 |
[5] | S. Boucksom, P. Eyssidieux, V. Guedj and A. Zeriahi,Monge-Ampère equations in big cohomology classes, Acta Math. 205 (2010), 199-262. ·Zbl 1213.32025 |
[6] | I. Chiose,On the invariance of the total Monge-Ampère volume of Hermitian metrics, arXiv:1609.05945 (2016). ·Zbl 1348.32007 |
[7] | D. Coman, V. Guedj and A. Zeriahi,Domains of definition of Monge-Ampère operators on compact Kähler manifolds, Math. Z. 259 (2008), 393-418. ·Zbl 1137.32015 |
[8] | T. Darvas, E. Di Nezza and C. H. Lu,L1metric geometry of big cohomology classes, Ann. Inst. Fourier (Grenoble) 68 (2018), 3053-3086. ·Zbl 1505.53081 |
[9] | T. Darvas, E. Di Nezza and C. H. Lu,Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity, Anal. PDE 11 (2018), 2049-2087. ·Zbl 1396.32011 |
[10] | T. Darvas, E. Di Nezza and C. H. Lu,On the singularity type of full mass currents in big cohomology classes, Compos. Math. 154 (2018), 380-409. ·Zbl 1398.32042 |
[11] | T. Darvas, E. Di Nezza and C. H. Lu,Log-concavity of volume and complex Monge- Ampère equations with prescribed singularity, Math. Ann. 379 (2021), 95-132. ·Zbl 1460.32087 |
[12] | T. Darvas, E. Di Nezza and C. H. Lu,The metric geometry of singularity types, J. Reine Angew. Math. 771 (2021), 137-170. ·Zbl 1503.32029 |
[13] | T. Darvas and C. H. Lu,Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry, Geom. Topol. 24 (2020), 1907-1967. ·Zbl 1479.32011 |
[14] | J.-P. Demailly,Regularization of closed positive currents of type(1,1)by the flow of a Chern connection, in: Contributions to Complex Analysis and Analytic Geometry, Aspects Math. E26, Vieweg, Braunschweig, 1994, 105-126. ·Zbl 0824.53064 |
[15] | E. Di Nezza and C. H. Lu,Generalized Monge-Ampère capacities, Int. Math. Res. Notices 2015, 7287-7322. ·Zbl 1330.32013 |
[16] | E. Di Nezza and C. H. Lu,Complex Monge-Ampère equations on quasi-projective varieties, J. Reine Angew. Math. 727 (2017), 145-167. ·Zbl 1380.32024 |
[17] | E. Di Nezza and S. Trapani,Monge-Ampère measures on contact sets, Math. Res. Lett., to appear; arXiv:1912.12720 (2019). |
[18] | V. Guedj, C. H. Lu and A. Zeriahi,Plurisubharmonic envelopes and supersolutions, J. Differential Geom. 113 (2019), 273-313. ·Zbl 1435.32041 |
[19] | V. Guedj and A. Zeriahi,Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), 607-639. ·Zbl 1087.32020 |
[20] | V. Guedj and A. Zeriahi,The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), 442-482. ·Zbl 1143.32022 |
[21] | V. Guedj and A. Zeriahi,Degenerate Complex Monge-Ampère Equations, EMS Tracts Math. 26, Eur. Math. Soc., Zürich, 2017. ·Zbl 1373.32001 |
[22] | S. Kołodziej,The complex Monge-Ampère equation, Acta Math. 180 (1998), 69-117. ·Zbl 0913.35043 |
[23] | C. H. Lu and V. D. Nguyên,Complex Hessian equations with prescribed singularity on compact Kähler manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci., to appear; arXiv:1909.02469 (2019). |
[24] | J. Ross and D. Witt Nyström,Analytic test configurations and geodesic rays, J. Symplectic Geom. 12 (2014), 125-169. ·Zbl 1300.32021 |
[25] | D.-V. Vu,Generalized non-pluripolar products of currents, arXiv:2004.11111 (2020). |
[26] | D. Witt Nyström,Monotonicity of non-pluripolar Monge-Ampère masses, Indiana Univ. Math. J. 68 (2019), 579-591. ·Zbl 1422.32041 |
[27] | M. Xia,Integration by parts formula for non-pluripolar product, arXiv:1907.06359 (2019). |
[28] | S.-T. Yau,On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978) ·Zbl 0362.53049 |