Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Approximating \(L_p\) unit balls via random sampling.(English)Zbl 1469.46012

A measure on \(\mathbb{R}^d\) is isotropic if it is centered and has the identity as its covariance. A random vector is isotropic if it is distributed according to an isotropic measure.
In this paper, the author considers an isotropic random vector \(X\) in \(\mathbb {R}^d\) that satisfies that for every \(v \in \mathbb{S}^{d-1}\), \(\|\langle X, v\rangle \|_{L_q} \leq L \| \langle X, v \rangle \|_{L_p}\) for some \(q \geq 2p\). The author shows that for \( 0 <\varepsilon < 1\), a set of \(N = c(p, q,\varepsilon) d\) random points, selected independently according to \(X\), can be used to construct a \(1 \pm \varepsilon\) approximation of the \(L_p\) unit ball endowed on \(\mathbb {R}^d\) by \(X\). Moreover, \(c(p, q, \varepsilon) \leq c^p \varepsilon^{-2} \log(2/\varepsilon)\); when \(q =2p\) the approximation is achieved with probability at least \(1 - 2 \exp(-c N \varepsilon^2/ \log^2(2/\varepsilon))\) and if \(q\) is much larger than \(p\) say, \(q =4p\), the approximation is achieved with probability at least \(1 - 2 \exp(-cN\varepsilon^2)\).
In particular, when \(X\) is a log-concave random vector, this estimate improves the previous state-of-the-art that \(N = c^\prime(p, \varepsilon) d^{p/2} \log d\) random points are enough and that the approximation is valid with constant probability.

MSC:

46B09 Probabilistic methods in Banach space theory
46B07 Local theory of Banach spaces
52A22 Random convex sets and integral geometry (aspects of convex geometry)
52A21 Convexity and finite-dimensional Banach spaces (including special norms, zonoids, etc.) (aspects of convex geometry)

Cite

References:

[1]Artstein-Avidan, S.; Giannopoulos, A.; Milman, V. D., Asymptotic Geometric Analysis. Part I, Mathematical Surveys and Monographs, vol. 202 (2015), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1337.52001
[2]Boucheron, S.; Lugosi, G.; Massart, P., Concentration Inequalities (2013), Oxford University Press: Oxford University Press Oxford ·Zbl 1279.60005
[3]Brazitikos, S.; Giannopoulos, A.; Valettas, P.; Vritsiou, B.-H., Geometry of Isotropic Convex Bodies, Mathematical Surveys and Monographs, vol. 196 (2014), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1304.52001
[4]Giné, E.; Koltchinskii, V., Concentration inequalities and asymptotic results for ratio type empirical processes, Ann. Probab., 34, 3, 1143-1216 (2006) ·Zbl 1152.60021
[5]Guédon, O.; Rudelson, M., \( L_p\)-moments of random vectors via majorizing measures, Adv. Math., 208, 2, 798-823 (2007) ·Zbl 1114.46008
[6]Klartag, B., Uniform almost sub-Gaussian estimates for linear functionals on convex sets, Algebra Anal., 19, 1, 109-148 (2007) ·Zbl 1140.60010
[7]Klartag, B.; Milman, E., Centroid bodies and the logarithmic Laplace transform—a unified approach, J. Funct. Anal., 262, 1, 10-34 (2012) ·Zbl 1236.52003
[8]Koltchinskii, V.; Lounici, K., Concentration inequalities and moment bounds for sample covariance operators, Bernoulli, 23, 1, 110-133 (2017) ·Zbl 1366.60057
[9]Koltchinskii, V.; Mendelson, S., Bounding the smallest singular value of a random matrix without concentration, Int. Math. Res. Not., 23, 12991-13008 (2015) ·Zbl 1331.15027
[10]Lounici, K., High-dimensional covariance matrix estimation with missing observations, Bernoulli, 20, 3, 1029-1058 (2014) ·Zbl 1320.62124
[11]Lugosi, G.; Mendelson, S., Multivariate mean estimation with direction-dependent accuracy, Preprint, Available at ·Zbl 07855544
[12]Lutwak, E.; Zhang, G., Blaschke-Santaló inequalities, J. Differ. Geom., 47, 1, 1-16 (1997) ·Zbl 0906.52003
[13]Mendelson, S., Approximating the covariance ellipsoid, Commun. Contemp. Math., 22, 8, Article 1950089 pp. (2021) ·Zbl 1447.62088
[14]Mendelson, S., Improving the sample complexity using global data, IEEE Trans. Inf. Theory, 48, 7, 1977-1991 (2002) ·Zbl 1061.68128
[15]Mendelson, S., Learning without concentration, J. ACM, 62, 3, Article 21 pp. (2015) ·Zbl 1333.68232
[16]Mendelson, S.; Zhivotovskiy, N., Robust covariance estimation under \(L_4 - L_2\) norm equivalence, Ann. Stat., 48, 3, 1648-1664 (2020) ·Zbl 1451.62084
[17]Minsker, S., Sub-Gaussian estimators of the mean of a random matrix with heavy-tailed entries, Ann. Stat., 46, 6A, 2871-2903 (2018) ·Zbl 1418.62235
[18]Minsker, S.; Wei, X., Robust modifications of U-statistics and applications to covariance estimation problems, Bernoulli, 26, 1, 694-727 (2020) ·Zbl 1457.62147
[19]Paouris, G., Concentration of mass on convex bodies, Geom. Funct. Anal., 16, 5, 1021-1049 (2006) ·Zbl 1114.52004
[20]Talagrand, M., Sharper bounds for Gaussian and empirical processes, Ann. Probab., 22, 1, 28-76 (1994) ·Zbl 0798.60051
[21]van der Vaart, A. W.; Wellner, J. A., Weak Convergence and Empirical Processes, Springer Series in Statistics (1996), Springer-Verlag: Springer-Verlag New York ·Zbl 0862.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp