46B09 | Probabilistic methods in Banach space theory |
46B07 | Local theory of Banach spaces |
52A22 | Random convex sets and integral geometry (aspects of convex geometry) |
52A21 | Convexity and finite-dimensional Banach spaces (including special norms, zonoids, etc.) (aspects of convex geometry) |
[1] | Artstein-Avidan, S.; Giannopoulos, A.; Milman, V. D., Asymptotic Geometric Analysis. Part I, Mathematical Surveys and Monographs, vol. 202 (2015), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1337.52001 |
[2] | Boucheron, S.; Lugosi, G.; Massart, P., Concentration Inequalities (2013), Oxford University Press: Oxford University Press Oxford ·Zbl 1279.60005 |
[3] | Brazitikos, S.; Giannopoulos, A.; Valettas, P.; Vritsiou, B.-H., Geometry of Isotropic Convex Bodies, Mathematical Surveys and Monographs, vol. 196 (2014), American Mathematical Society: American Mathematical Society Providence, RI ·Zbl 1304.52001 |
[4] | Giné, E.; Koltchinskii, V., Concentration inequalities and asymptotic results for ratio type empirical processes, Ann. Probab., 34, 3, 1143-1216 (2006) ·Zbl 1152.60021 |
[5] | Guédon, O.; Rudelson, M., \( L_p\)-moments of random vectors via majorizing measures, Adv. Math., 208, 2, 798-823 (2007) ·Zbl 1114.46008 |
[6] | Klartag, B., Uniform almost sub-Gaussian estimates for linear functionals on convex sets, Algebra Anal., 19, 1, 109-148 (2007) ·Zbl 1140.60010 |
[7] | Klartag, B.; Milman, E., Centroid bodies and the logarithmic Laplace transform—a unified approach, J. Funct. Anal., 262, 1, 10-34 (2012) ·Zbl 1236.52003 |
[8] | Koltchinskii, V.; Lounici, K., Concentration inequalities and moment bounds for sample covariance operators, Bernoulli, 23, 1, 110-133 (2017) ·Zbl 1366.60057 |
[9] | Koltchinskii, V.; Mendelson, S., Bounding the smallest singular value of a random matrix without concentration, Int. Math. Res. Not., 23, 12991-13008 (2015) ·Zbl 1331.15027 |
[10] | Lounici, K., High-dimensional covariance matrix estimation with missing observations, Bernoulli, 20, 3, 1029-1058 (2014) ·Zbl 1320.62124 |
[11] | Lugosi, G.; Mendelson, S., Multivariate mean estimation with direction-dependent accuracy, Preprint, Available at ·Zbl 07855544 |
[12] | Lutwak, E.; Zhang, G., Blaschke-Santaló inequalities, J. Differ. Geom., 47, 1, 1-16 (1997) ·Zbl 0906.52003 |
[13] | Mendelson, S., Approximating the covariance ellipsoid, Commun. Contemp. Math., 22, 8, Article 1950089 pp. (2021) ·Zbl 1447.62088 |
[14] | Mendelson, S., Improving the sample complexity using global data, IEEE Trans. Inf. Theory, 48, 7, 1977-1991 (2002) ·Zbl 1061.68128 |
[15] | Mendelson, S., Learning without concentration, J. ACM, 62, 3, Article 21 pp. (2015) ·Zbl 1333.68232 |
[16] | Mendelson, S.; Zhivotovskiy, N., Robust covariance estimation under \(L_4 - L_2\) norm equivalence, Ann. Stat., 48, 3, 1648-1664 (2020) ·Zbl 1451.62084 |
[17] | Minsker, S., Sub-Gaussian estimators of the mean of a random matrix with heavy-tailed entries, Ann. Stat., 46, 6A, 2871-2903 (2018) ·Zbl 1418.62235 |
[18] | Minsker, S.; Wei, X., Robust modifications of U-statistics and applications to covariance estimation problems, Bernoulli, 26, 1, 694-727 (2020) ·Zbl 1457.62147 |
[19] | Paouris, G., Concentration of mass on convex bodies, Geom. Funct. Anal., 16, 5, 1021-1049 (2006) ·Zbl 1114.52004 |
[20] | Talagrand, M., Sharper bounds for Gaussian and empirical processes, Ann. Probab., 22, 1, 28-76 (1994) ·Zbl 0798.60051 |
[21] | van der Vaart, A. W.; Wellner, J. A., Weak Convergence and Empirical Processes, Springer Series in Statistics (1996), Springer-Verlag: Springer-Verlag New York ·Zbl 0862.60002 |