Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Short communication: the generalized finite difference method for electroelastic analysis of 2D piezoelectric structures.(English)Zbl 1464.74365

Summary: Simulating the response of piezoelectric devices requires solving the coupled mechanical and electrical partial differential equations. This short communication documents the first attempt to apply the meshless generalized finite difference method (GFDM) for the electroelastic analysis of piezoelectric structures. In the present method, the entire computational domain is represented by a cloud of scattered nodes and the field variables are interpolated in terms of the values of nodes in its supporting domain based on the local Taylor series expansion and the moving least squares approximation. Emphasis is placed on the application of the GFDM to obtain the coupled elastic and electric fields. The present results agree pretty well with those of the exact solutions as well as the finite element method (FEM) calculated by using ABAQUS.

MSC:

74S20 Finite difference methods applied to problems in solid mechanics
65N06 Finite difference methods for boundary value problems involving PDEs
74F15 Electromagnetic effects in solid mechanics

Software:

ABAQUS

Cite

References:

[1]Chen, S. S.; Li, Q. H.; Liu, Y. H.; Xue, Z. Q., A meshless local natural neighbour interpolation method for analysis of two-dimensional piezoelectric structures, Eng Anal Bound Elem, 37, 2, 273-279 (2013) ·Zbl 1351.74079
[2]Cao, C.; Qin, Q.-H.; Yu, A., Hybrid fundamental-solution-based FEM for piezoelectric materials, Comput Mech, 50, 4, 397-412 (2012) ·Zbl 1300.74050
[3]Bui, T. Q.; Nguyen, M. N.; Zhang, C.; Pham, D. A.K., An efficient meshfree method for analysis of two-dimensional piezoelectric structures, Smart Mater Struct, 20, 6, Article 065016 pp. (2011)
[4]Liu, Y.; Fan, H., Analysis of thin piezoelectric solids by the boundary element method, Comput Methods Appl Mech Eng, 191, 21-22, 2297-2315 (2002) ·Zbl 1131.74342
[5]Li, P.-W.; Fan, C.-M., Generalized finite difference method for two-dimensional shallow water equations, Eng Anal Bound Elem, 80, 58-71 (2017) ·Zbl 1403.76133
[6]Qu, W.; He, H., A spatial-temporal GFDM with an additional condition for transient heat conduction analysis of FGMs, Appl Math Letters, 110, Article 106579 pp. (2020) ·Zbl 1452.80005
[7]Benito, J. J.; Ureña, F.; Gavete, L.; Salete, E.; Ureña, M., Implementations with generalized finite differences of the displacements and velocity-stress formulations of seismic wave propagation problem, Appl Math Model, 52, 1-14 (2017) ·Zbl 1480.65203
[8]Wang, Y.; Gu, Y.; Fan, C.-M.; Chen, W.; Zhang, C., Domain-decomposition generalized finite difference method for stress analysis in multi-layered elastic materials, Eng Anal Bound Elem, 94, 94-102 (2018) ·Zbl 1403.74282
[9]Fan, C. M.; Huang, Y. K.; Li, P. W.; Chiu, C. L., Application of the generlized finite-difference method to inverse biharmonic boundary-value problems, Numer Heat Tranf B-Fundam, 65, 2, 129-154 (2014)
[10]Gu, Y.; Qu, W.; Chen, W.; Song, L.; Zhang, C., The generalized finite difference method for long-time dynamic modeling of three-dimensional coupled thermoelasticity problems, J Comput Phys, 384, 42-59 (2019) ·Zbl 1451.74215
[11]Fu, Z.-J.; Zhang, J.; Li, P.-W.; Zheng, J.-H., A semi-Lagrangian meshless framework for numerical solutions of two-dimensional sloshing phenomenon, Eng Anal Bound Elem, 112, 58-67 (2020) ·Zbl 1464.65201
[12]Rizzo, F. J.; Shippy, D. J.; Rezayat, M., A boundary integral equation method for radiation and scattering of elastic waves in three dimensions, Int J Num Methods Eng, 21, 1, 115-129 (1985) ·Zbl 0551.73035
[13]Liu, Y.; Rizzo, F. J., Scattering of elastic waves from thin shapes in three dimensions using the composite boundary integral equation formulation, J Acoust Soc Am, 102, 2, 926-932 (1997)
[14]Krishnasamy, G.; Rizzo, F. J.; Liu, Y., Boundary integral equations for thin bodies, Int J Num Methods Eng, 37, 1, 107-121 (1994) ·Zbl 0795.73076
[15]Chao, J. C.; Liu, Y. J.; Rizzo, F. J.; Martin, P. A.; Udpa, L., Regularized integral equations and curvilinear boundary elements for electromagnetic wave scattering in three dimensions, IEEE Trans Antennas Propag, 43, 12, 1416-1422 (1995)
[16]Liu, Y.; Rizzo, F. J., Hypersingular boundary integral equations for radiation and scattering of elastic waves in three dimensions, Comput Methods Appl Mech Eng, 107, 1, 131-144 (1993) ·Zbl 0806.73073
[17]Benito, J. J.; Urena, F.; Gavete, L.; Alvarez, R., An h-adaptive method in the generalized finite differences, Comput Meth Appl Mech Eng, 192, 5-6, 735-759 (2003) ·Zbl 1024.65099
[18]Fu, Z.-J.; Tang, Z.-C.; Zhao, H.-T.; Li, P.-W.; Rabczuk, T., Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method, Eur Phys J Plus, 134, 6, 272 (2019)
[19]Fan, C.-M.; Chu, C.-N.; Šarler, B.; Li, T.-H., Numerical solutions of waves-current interactions by generalized finite difference method, Eng Anal Bound Elem, 100, 150-163 (2019) ·Zbl 1464.74266
[20]Ding, H. J.; Wang, G. Q.; Chen, W. Q., A boundary integral formulation and 2D fundamental solutions for piezoelectric media, Comput Methods Appl Mech Eng, 158, 1-2, 65-80 (1998) ·Zbl 0954.74077
[21]Benito, J. J.; Urena, F.; Gavete, L., Influence of several factors in the generalized finite difference method, Appl Math Model, 25, 12, 1039-1053 (2001) ·Zbl 0994.65111
[22]Gu, Y.; Hua, Q.; Zhang, C.; He, X., The generalized finite difference method for long-time transient heat conduction in 3D anisotropic composite materials, Appl Math Model, 71, 316-330 (2019) ·Zbl 1481.74032
[23]Wang, H.; Tan, G.; Cen, S.; Yao, Z., Numerical determination of effective properties of voided piezoelectric materials using BNM, Eng Anal Bound Elem, 29, 6, 636-646 (2005) ·Zbl 1182.74243
[24]Ohs, R. R.; Aluru, N. R., Meshless analysis of piezoelectric devices, Comput Mech, 27, 1, 23-36 (2001) ·Zbl 1005.74078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp