Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Isolated periodic wave trains and local critical wave lengths for a nonlinear reaction-diffusion equation.(English)Zbl 1464.35148

Summary: In this paper, we consider the bifurcation of small amplitude isolated periodic wave trains (SAIPWT) and the monotonicity of wave length of the periodic wave trains (PWT) for a reaction-diffusion equation. By the travelling wave transformation, the reaction-diffusion equation is transferred into its travelling wave system. Using the computer algebra system, we compute the first six singular point values for the travelling wave system, and we prove that the reaction-diffusion equation has at most 6 SAIPWT. Moreover, we study the local critical period bifurcation at the origin for the travelling wave system, and deduce the monotonicity of wave length \(l(h)\) (i.e. the wave length \(l\) as a function of the positive half wave height \(h)\) of the continuum of PWT for the reaction-diffusion equation.

MSC:

35K57 Reaction-diffusion equations
35K59 Quasilinear parabolic equations

Cite

References:

[1]Sánchez-Garduño, F.; Maini, P. K., Existence and uniqueness of a sharp travelling wave solution for a generalized fisher-KPP equation, J Math Biol, 33, 2, 163-192 (1994) ·Zbl 0822.92021
[2]Sánchez-Garduño, F.; Maini, P. K., Travelling wave phenomena in some degenerate reaction-diffusion equations, J Differ Equ, 117, 2, 281-319 (1995) ·Zbl 0821.35085
[4]Mañosa, V., Periodic travelling waves in nonlinear reaction-diffusion equations via multiple Hopf bifurcation, Chaos Soli Fra, 18, 2, 241-257 (2003) ·Zbl 1068.35046
[5]Li, J.; Liu, Z., Smooth and non-smooth travelling waves in a nonlinearly dispersive equation, Appl Math Model, 25, 1, 41-56 (2000) ·Zbl 0985.37072
[6]Li, J.; Liu, Z., Travelling wave solutions for a class of nonlinear dispersive equations, Chin Ann Math, 23, 3, 397-418 (2002) ·Zbl 1011.35014
[7]Ablowitz, M.; Fuchsstiner, B.; Kruskal, M., Topics in soliton theory and exactly solvable nonlinear equations (1987), W Sci Pub Sing ·Zbl 0721.00016
[8]Zhou, Y.; Liu, Q.; Zhang, W., Bounded traveling waves of the Burgers-Huxley equationi, Nonl Anal, 74, 4, 1047-1060 (2011) ·Zbl 1207.35052
[9]Sánchez-Garduño, F.; Maini, P. K., Travelling wave phenomena in non-linear diffusion degenerate nagumo equations, J Math Biol, 35, 6, 713-728 (1997) ·Zbl 0887.35073
[10]Geyer, A.; Villadelprat, J., On the wave length of smooth periodic traveling waves of the camassa-holm equation, J Differ Equ, 259, 2317-2332 (2015) ·Zbl 1317.35196
[11]Sherratt, J.; Smith, M., Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models, J Roy Soc Inter, 5, 22, 483-505 (2008)
[12]Meancas, S.; Choudhury, S., The complex cubic-quintic Ginzburg-landau equation: Hopf bifurcations yielding traveling waves, Math Com Simu, 74, 4, 281-291 (2007) ·Zbl 1111.35081
[13]Guan, J.; Fang, S.; Wang, X.; Guo, C., Hopf bifurcation of traveling wave solutions for time-dependent Ginzburg-Landau equation for atomic fermi gases near the BCS-BEC crossover, Comm Nonl Sci Num Sim, 18, 1, 124-135 (2013) ·Zbl 1253.35171
[14]Wang, Q.; Huang, W., Limit periodic travelling wave solution of a model for biological invasions, Appl Math Lett, 34, 1, 13-16 (2014) ·Zbl 1314.92150
[15]Yang, G., Hopf bifurcation of traveling wave solutions of delayed fisher-KPP equation, Appl Math Comput, 220, 213-220 (2013) ·Zbl 1330.35219
[16]Yagasaki, K., Monotonicity of the period function for \(u'' - u + u^p = 0\) with \(p\) ∈ \(r\) and \(p > 1\), J Differ Equ, 255, 1988-2001 (2013) ·Zbl 1292.34039
[17]Benguria, R. D.; Depassier, M. C.; Loss, M., Monotonicity of the period of a non linear oscillator, Nonl Anal, 140, 61-68 (2016) ·Zbl 1366.34055
[18]Cima, A.; Gasull, A.; Mañosas, M., Period function for a class of hamiltonian systems, J Differ Equ, 168, 180-199 (2000) ·Zbl 0991.37039
[19]Yang, L.; Zeng, X., The period function of Liénard systems, Proc R Soc Edin, 143, A, 205-221 (2013) ·Zbl 1302.34052
[20]Chen, A.; Guo, L.; Deng, X., Existence of solitary waves and periodic waves for a perturbed generalized BBM equation, J Differ Equ, 261, 5324-5349 (2016) ·Zbl 1358.34051
[21]Lenells, J., Traveling wave solutions of the camassa-holm equation, J Differ Equ, 217, 393-430 (2005) ·Zbl 1082.35127
[22]Chicone, C.; Jacobs, M., Bifurcation of critical periods for plane vector fields, Trans Amer Math Soc, 312, 2, 433-486 (1989) ·Zbl 0678.58027
[23]Lin, Y.; Li, J., The normal form and critical points of closed orbits for autonomous planar system, Acta Math Sinica, 34, 490-501 (1991) ·Zbl 0744.34041
[24]Li, C.; Lu, K., The period function of hyperelliptic Hamiltonians of degree 5 with real critical points, Nonlinearity, 21, 3, 465-483 (2008) ·Zbl 1142.34016
[25]Yang, L.; Zeng, X., The period function of potential systems of polynomials with real zeros, Bull Sci Math, 133, 6, 555-577 (2009) ·Zbl 1191.34055
[26]Liang, H.; Zhao, Y., On the period function of reversible quadratic centers with their orbits inside quartics, Nonl Anal, 71, 11, 5655-5671 (2009) ·Zbl 1182.34059
[27]Mañosas, F.; Villadelprat, J., A note on the critical periods of potential systems, Int J Bifur Chaos, 16, 3, 765-774 (2006) ·Zbl 1149.34022
[28]Chen, A.; Li, J.; Huang, W., The monotonicity and critical periods of periodic waves of the \(ϕ^6\) field model, Nonl Dyn, 63, 205-215 (2011) ·Zbl 1215.35108
[29]Rousseau, C.; Toni, B., Local bifurcations of critical periods in the reduced kukles system, Cana J Math, 49, 2, 150-151 (1997)
[30]Zhang, W.; Hou, X.; Zeng, Z., Weak centers and bifurcation of critical periods in revertible cubic system, Com Math Appl, 40, 6, 771-782 (2000) ·Zbl 0962.34025
[31]Yu, P.; Han, M., Critical periods of planar revertible vector field with third-degree polynomial functions, Int J Bifur Chaos, 19, 1, 419-433 (2011) ·Zbl 1170.34316
[32]Yu, P.; Han, M.; Zhang, J., Critical periods of third-order planar Hamiltonian systems, Int J Bifur Chaos, 20, 7, 2213-2224 (2010) ·Zbl 1196.34049
[33]Zou, L.; Chen, X.; Zhang, W., Local bifurcations of critical periods for cubic Liénard equations with cubic damping, J Comput Appl Math, 222, 2, 404-410 (2008) ·Zbl 1163.34349
[34]Xu, Q.; Huang, W., The center conditions and local bifurcation of critical periods for a Liénard system, Appl Math Comput, 217, 15, 6637-6643 (2011) ·Zbl 1218.34034
[35]Chen, T.; Huang, W.; Ren, D., Weak center and local critical periods for a \(z_2\) equivariant cubic system, Nonl Dyn, 78, 4, 2319-2329 (2014)
[36]Chen, H.; Liu, Y., Linear recursion formulas of quantities of singular point and applications, Appl Math Comput, 148, 1, 163-171 (2004) ·Zbl 1053.65051
[37]Liu, Y.; Huang, W., A cubic system with twelve small amplitude limit cycles, Bull Sci Math, 129, 83-98 (2005) ·Zbl 1086.34030
[38]Yu, P.; Han, M., Twelve limit cycles in a cubic case of the 16th Hilbert problem, Int J Bifur Chaos, 15, 7, 2191-2205 (2005) ·Zbl 1092.34524
[39]Liu, Y.; Li, J., New study on the center problem and bifurcations of limit cycles for the Lyapunov system (i), Int J Bifur Chaos, 19, 9, 3791-3801 (2009) ·Zbl 1182.34044
[40]Liu, Y.; Li, J.; Huang, W., Singular point values, center problemma and bifurcations of limit cycles of two dimensional differential autonomous systems (2008), Beijing: Science Press
[41]Liu, Y.; Huang, W., A new method to determine isochronous center conditions for polynomial differential systems, Bull Sci Math, 127, 2, 133-148 (2003) ·Zbl 1034.34032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp