[1] | Sánchez-Garduño, F.; Maini, P. K., Existence and uniqueness of a sharp travelling wave solution for a generalized fisher-KPP equation, J Math Biol, 33, 2, 163-192 (1994) ·Zbl 0822.92021 |
[2] | Sánchez-Garduño, F.; Maini, P. K., Travelling wave phenomena in some degenerate reaction-diffusion equations, J Differ Equ, 117, 2, 281-319 (1995) ·Zbl 0821.35085 |
[4] | Mañosa, V., Periodic travelling waves in nonlinear reaction-diffusion equations via multiple Hopf bifurcation, Chaos Soli Fra, 18, 2, 241-257 (2003) ·Zbl 1068.35046 |
[5] | Li, J.; Liu, Z., Smooth and non-smooth travelling waves in a nonlinearly dispersive equation, Appl Math Model, 25, 1, 41-56 (2000) ·Zbl 0985.37072 |
[6] | Li, J.; Liu, Z., Travelling wave solutions for a class of nonlinear dispersive equations, Chin Ann Math, 23, 3, 397-418 (2002) ·Zbl 1011.35014 |
[7] | Ablowitz, M.; Fuchsstiner, B.; Kruskal, M., Topics in soliton theory and exactly solvable nonlinear equations (1987), W Sci Pub Sing ·Zbl 0721.00016 |
[8] | Zhou, Y.; Liu, Q.; Zhang, W., Bounded traveling waves of the Burgers-Huxley equationi, Nonl Anal, 74, 4, 1047-1060 (2011) ·Zbl 1207.35052 |
[9] | Sánchez-Garduño, F.; Maini, P. K., Travelling wave phenomena in non-linear diffusion degenerate nagumo equations, J Math Biol, 35, 6, 713-728 (1997) ·Zbl 0887.35073 |
[10] | Geyer, A.; Villadelprat, J., On the wave length of smooth periodic traveling waves of the camassa-holm equation, J Differ Equ, 259, 2317-2332 (2015) ·Zbl 1317.35196 |
[11] | Sherratt, J.; Smith, M., Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models, J Roy Soc Inter, 5, 22, 483-505 (2008) |
[12] | Meancas, S.; Choudhury, S., The complex cubic-quintic Ginzburg-landau equation: Hopf bifurcations yielding traveling waves, Math Com Simu, 74, 4, 281-291 (2007) ·Zbl 1111.35081 |
[13] | Guan, J.; Fang, S.; Wang, X.; Guo, C., Hopf bifurcation of traveling wave solutions for time-dependent Ginzburg-Landau equation for atomic fermi gases near the BCS-BEC crossover, Comm Nonl Sci Num Sim, 18, 1, 124-135 (2013) ·Zbl 1253.35171 |
[14] | Wang, Q.; Huang, W., Limit periodic travelling wave solution of a model for biological invasions, Appl Math Lett, 34, 1, 13-16 (2014) ·Zbl 1314.92150 |
[15] | Yang, G., Hopf bifurcation of traveling wave solutions of delayed fisher-KPP equation, Appl Math Comput, 220, 213-220 (2013) ·Zbl 1330.35219 |
[16] | Yagasaki, K., Monotonicity of the period function for \(u'' - u + u^p = 0\) with \(p\) ∈ \(r\) and \(p > 1\), J Differ Equ, 255, 1988-2001 (2013) ·Zbl 1292.34039 |
[17] | Benguria, R. D.; Depassier, M. C.; Loss, M., Monotonicity of the period of a non linear oscillator, Nonl Anal, 140, 61-68 (2016) ·Zbl 1366.34055 |
[18] | Cima, A.; Gasull, A.; Mañosas, M., Period function for a class of hamiltonian systems, J Differ Equ, 168, 180-199 (2000) ·Zbl 0991.37039 |
[19] | Yang, L.; Zeng, X., The period function of Liénard systems, Proc R Soc Edin, 143, A, 205-221 (2013) ·Zbl 1302.34052 |
[20] | Chen, A.; Guo, L.; Deng, X., Existence of solitary waves and periodic waves for a perturbed generalized BBM equation, J Differ Equ, 261, 5324-5349 (2016) ·Zbl 1358.34051 |
[21] | Lenells, J., Traveling wave solutions of the camassa-holm equation, J Differ Equ, 217, 393-430 (2005) ·Zbl 1082.35127 |
[22] | Chicone, C.; Jacobs, M., Bifurcation of critical periods for plane vector fields, Trans Amer Math Soc, 312, 2, 433-486 (1989) ·Zbl 0678.58027 |
[23] | Lin, Y.; Li, J., The normal form and critical points of closed orbits for autonomous planar system, Acta Math Sinica, 34, 490-501 (1991) ·Zbl 0744.34041 |
[24] | Li, C.; Lu, K., The period function of hyperelliptic Hamiltonians of degree 5 with real critical points, Nonlinearity, 21, 3, 465-483 (2008) ·Zbl 1142.34016 |
[25] | Yang, L.; Zeng, X., The period function of potential systems of polynomials with real zeros, Bull Sci Math, 133, 6, 555-577 (2009) ·Zbl 1191.34055 |
[26] | Liang, H.; Zhao, Y., On the period function of reversible quadratic centers with their orbits inside quartics, Nonl Anal, 71, 11, 5655-5671 (2009) ·Zbl 1182.34059 |
[27] | Mañosas, F.; Villadelprat, J., A note on the critical periods of potential systems, Int J Bifur Chaos, 16, 3, 765-774 (2006) ·Zbl 1149.34022 |
[28] | Chen, A.; Li, J.; Huang, W., The monotonicity and critical periods of periodic waves of the \(ϕ^6\) field model, Nonl Dyn, 63, 205-215 (2011) ·Zbl 1215.35108 |
[29] | Rousseau, C.; Toni, B., Local bifurcations of critical periods in the reduced kukles system, Cana J Math, 49, 2, 150-151 (1997) |
[30] | Zhang, W.; Hou, X.; Zeng, Z., Weak centers and bifurcation of critical periods in revertible cubic system, Com Math Appl, 40, 6, 771-782 (2000) ·Zbl 0962.34025 |
[31] | Yu, P.; Han, M., Critical periods of planar revertible vector field with third-degree polynomial functions, Int J Bifur Chaos, 19, 1, 419-433 (2011) ·Zbl 1170.34316 |
[32] | Yu, P.; Han, M.; Zhang, J., Critical periods of third-order planar Hamiltonian systems, Int J Bifur Chaos, 20, 7, 2213-2224 (2010) ·Zbl 1196.34049 |
[33] | Zou, L.; Chen, X.; Zhang, W., Local bifurcations of critical periods for cubic Liénard equations with cubic damping, J Comput Appl Math, 222, 2, 404-410 (2008) ·Zbl 1163.34349 |
[34] | Xu, Q.; Huang, W., The center conditions and local bifurcation of critical periods for a Liénard system, Appl Math Comput, 217, 15, 6637-6643 (2011) ·Zbl 1218.34034 |
[35] | Chen, T.; Huang, W.; Ren, D., Weak center and local critical periods for a \(z_2\) equivariant cubic system, Nonl Dyn, 78, 4, 2319-2329 (2014) |
[36] | Chen, H.; Liu, Y., Linear recursion formulas of quantities of singular point and applications, Appl Math Comput, 148, 1, 163-171 (2004) ·Zbl 1053.65051 |
[37] | Liu, Y.; Huang, W., A cubic system with twelve small amplitude limit cycles, Bull Sci Math, 129, 83-98 (2005) ·Zbl 1086.34030 |
[38] | Yu, P.; Han, M., Twelve limit cycles in a cubic case of the 16th Hilbert problem, Int J Bifur Chaos, 15, 7, 2191-2205 (2005) ·Zbl 1092.34524 |
[39] | Liu, Y.; Li, J., New study on the center problem and bifurcations of limit cycles for the Lyapunov system (i), Int J Bifur Chaos, 19, 9, 3791-3801 (2009) ·Zbl 1182.34044 |
[40] | Liu, Y.; Li, J.; Huang, W., Singular point values, center problemma and bifurcations of limit cycles of two dimensional differential autonomous systems (2008), Beijing: Science Press |
[41] | Liu, Y.; Huang, W., A new method to determine isochronous center conditions for polynomial differential systems, Bull Sci Math, 127, 2, 133-148 (2003) ·Zbl 1034.34032 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.