Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Weakly canceling operators and singular integrals.(English)Zbl 1462.42025

Proc. Steklov Inst. Math.312, 249-260 (2021) and Tr. Mat. Inst. Steklova 312, 259-271 (2021).
Summary: We suggest an elementary harmonic analysis approach to canceling and weakly canceling differential operators, which allows us to extend these notions to the anisotropic setting and replace differential operators with Fourier multiplies with mild smoothness regularity. In this more general setting of anisotropic Fourier multipliers, we prove the inequality \(\|f\|_{L_\infty} \lesssim \|Af\|_{L_1}\) if \(A\) is a weakly canceling operator of order \(d\) and the inequality \(\|f\|_{L_2} \lesssim \|Af\|_{L_1}\) if \(A\) is a canceling operator of order \(d/2\), provided \(f\) is a function of \(d\) variables.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B15 Multipliers for harmonic analysis in several variables
47E99 Ordinary differential operators

Cite

References:

[1]Ayoush, R.; Stolyarov, D. M.; Wojciechowski, M., Sobolev martingales, Rev. Mat. Iberoam., 0, 0 (2020)
[2]Ayoush, R.; Wojciechowski, M., On dimension and regularity of bundle measures (2017)
[3]Besov, O. V.; Il’in, V. P.; Lizorkin, P. I., \(L_p\)-estimates of a certain class of nonisotropic singular integrals, Sov. Math., Dokl., 7, 1065-1069 (1966) ·Zbl 0158.12903
[4]Besov, O. V.; Il’in, V. P.; Nikol’skii, S. M., Integral Representations of Functions and Embedding Theorems (1996), Moscow: Nauka, Moscow ·Zbl 0352.46023
[5]Besov, O. V.; Lizorkin, P. I., Singular integral operators and sequences of convolutions in \(L_p\) spaces, Math. USSR, Sb., 2, 1, 57-76 (1967) ·Zbl 0167.41102 ·doi:10.1070/SM1967v002n01ABEH002324
[6]Bourgain, J.; Brezis, H., On the equation \(\operatorname{div} Y=f\) and application to control of phases, J. Am. Math. Soc., 16, 2, 393-426 (2002) ·Zbl 1075.35006 ·doi:10.1090/S0894-0347-02-00411-3
[7]Bourgain, J.; Brezis, H., New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., 9, 2, 277-315 (2007) ·Zbl 1176.35061 ·doi:10.4171/JEMS/80
[8]Bousquet, P.; Schaftingen, J. Van, Hardy-Sobolev inequalities for vector fields and canceling linear differential operators, Indiana Univ. Math. J., 63, 5, 1419-1445 (2014) ·Zbl 1325.46037 ·doi:10.1512/iumj.2014.63.5395
[9]Fabes, E. B.; Riviere, N. M., Singular integrals with mixed homogeneity, Stud. Math., 27, 19-38 (1966) ·Zbl 0161.32403 ·doi:10.4064/sm-27-1-19-38
[10]Kislyakov, S. V., Sobolev imbedding operators and the nonisomorphism of certain Banach spaces, Funct. Anal. Appl., 9, 4, 290-294 (1975) ·Zbl 0329.46036 ·doi:10.1007/BF01075874
[11]Kislyakov, S. V.; Maksimov, D. V., An embedding theorem with anisotropy for vector fields, J. Math. Sci., 234, 3, 343-349 (2018) ·Zbl 1409.46027 ·doi:10.1007/s10958-018-4010-y
[12]Kislyakov, S. V.; Maksimov, D. V.; Stolyarov, D. M., Differential expressions with mixed homogeneity and spaces of smooth functions they generate in arbitrary dimension, J. Funct. Anal., 269, 10, 3220-3263 (2015) ·Zbl 1348.46037 ·doi:10.1016/j.jfa.2015.09.001
[13]Maz’ya, V., Bourgain-Brezis type inequality with explicit constants, Interpolation Theory and Applications, 445, 247-252 (2007) ·Zbl 1143.46017 ·doi:10.1090/conm/445/08605
[14]Raiţă, B., -estimates for constant rank operators (2018)
[15]Raiţă, B., Critical \(\text{L}^p\)-differentiability of \(\text{BV}^{\mathbb{A}} \)-maps and canceling operators, Trans. Am. Math. Soc., 372, 10, 7297-7326 (2019) ·Zbl 1429.26019 ·doi:10.1090/tran/7878
[16]Raiţă, B.; Skorobogatova, A., Continuity and canceling operators of order \(n\) on \(\mathbb{R}^n\), Calc. Var. Partial Diff. Eqns., 59, 2 (2020) ·Zbl 1443.47046 ·doi:10.1007/s00526-020-01739-z
[17]Schaftingen, J. Van, Estimates for \(L^1\)-vector fields, C. R., Math., Acad. Sci. Paris, 339, 3, 181-186 (2004) ·Zbl 1049.35069 ·doi:10.1016/j.crma.2004.05.013
[18]Schaftingen, J. Van, Estimates for \(L^1\)-vector fields under higher-order differential conditions, J. Eur. Math. Soc., 10, 4, 867-882 (2008) ·Zbl 1228.46034 ·doi:10.4171/JEMS/133
[19]Schaftingen, J. Van, Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc., 15, 3, 877-921 (2013) ·Zbl 1284.46032 ·doi:10.4171/JEMS/380
[20]Schaftingen, J. Van, Limiting Bourgain-Brezis estimates for systems of linear differential equations: Theme and variations, J. Fixed Point Theory Appl., 15, 2, 273-297 (2014) ·Zbl 1311.35005 ·doi:10.1007/s11784-014-0177-0
[21]Stolyarov, D. M., Bilinear embedding theorems for differential operators in \(\mathbb{R}^2\), J. Math. Sci., 209, 5, 792-807 (2015) ·Zbl 1331.35016 ·doi:10.1007/s10958-015-2527-x
[22]Stolyarov, D., Martingale interpretation of weakly cancelling differential operators, J. Math. Sci., 251, 2, 286-290 (2020) ·Zbl 1466.46030 ·doi:10.1007/s10958-020-05089-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp