42B20 | Singular and oscillatory integrals (Calderón-Zygmund, etc.) |
42B15 | Multipliers for harmonic analysis in several variables |
47E99 | Ordinary differential operators |
[1] | Ayoush, R.; Stolyarov, D. M.; Wojciechowski, M., Sobolev martingales, Rev. Mat. Iberoam., 0, 0 (2020) |
[2] | Ayoush, R.; Wojciechowski, M., On dimension and regularity of bundle measures (2017) |
[3] | Besov, O. V.; Il’in, V. P.; Lizorkin, P. I., \(L_p\)-estimates of a certain class of nonisotropic singular integrals, Sov. Math., Dokl., 7, 1065-1069 (1966) ·Zbl 0158.12903 |
[4] | Besov, O. V.; Il’in, V. P.; Nikol’skii, S. M., Integral Representations of Functions and Embedding Theorems (1996), Moscow: Nauka, Moscow ·Zbl 0352.46023 |
[5] | Besov, O. V.; Lizorkin, P. I., Singular integral operators and sequences of convolutions in \(L_p\) spaces, Math. USSR, Sb., 2, 1, 57-76 (1967) ·Zbl 0167.41102 ·doi:10.1070/SM1967v002n01ABEH002324 |
[6] | Bourgain, J.; Brezis, H., On the equation \(\operatorname{div} Y=f\) and application to control of phases, J. Am. Math. Soc., 16, 2, 393-426 (2002) ·Zbl 1075.35006 ·doi:10.1090/S0894-0347-02-00411-3 |
[7] | Bourgain, J.; Brezis, H., New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., 9, 2, 277-315 (2007) ·Zbl 1176.35061 ·doi:10.4171/JEMS/80 |
[8] | Bousquet, P.; Schaftingen, J. Van, Hardy-Sobolev inequalities for vector fields and canceling linear differential operators, Indiana Univ. Math. J., 63, 5, 1419-1445 (2014) ·Zbl 1325.46037 ·doi:10.1512/iumj.2014.63.5395 |
[9] | Fabes, E. B.; Riviere, N. M., Singular integrals with mixed homogeneity, Stud. Math., 27, 19-38 (1966) ·Zbl 0161.32403 ·doi:10.4064/sm-27-1-19-38 |
[10] | Kislyakov, S. V., Sobolev imbedding operators and the nonisomorphism of certain Banach spaces, Funct. Anal. Appl., 9, 4, 290-294 (1975) ·Zbl 0329.46036 ·doi:10.1007/BF01075874 |
[11] | Kislyakov, S. V.; Maksimov, D. V., An embedding theorem with anisotropy for vector fields, J. Math. Sci., 234, 3, 343-349 (2018) ·Zbl 1409.46027 ·doi:10.1007/s10958-018-4010-y |
[12] | Kislyakov, S. V.; Maksimov, D. V.; Stolyarov, D. M., Differential expressions with mixed homogeneity and spaces of smooth functions they generate in arbitrary dimension, J. Funct. Anal., 269, 10, 3220-3263 (2015) ·Zbl 1348.46037 ·doi:10.1016/j.jfa.2015.09.001 |
[13] | Maz’ya, V., Bourgain-Brezis type inequality with explicit constants, Interpolation Theory and Applications, 445, 247-252 (2007) ·Zbl 1143.46017 ·doi:10.1090/conm/445/08605 |
[14] | Raiţă, B., -estimates for constant rank operators (2018) |
[15] | Raiţă, B., Critical \(\text{L}^p\)-differentiability of \(\text{BV}^{\mathbb{A}} \)-maps and canceling operators, Trans. Am. Math. Soc., 372, 10, 7297-7326 (2019) ·Zbl 1429.26019 ·doi:10.1090/tran/7878 |
[16] | Raiţă, B.; Skorobogatova, A., Continuity and canceling operators of order \(n\) on \(\mathbb{R}^n\), Calc. Var. Partial Diff. Eqns., 59, 2 (2020) ·Zbl 1443.47046 ·doi:10.1007/s00526-020-01739-z |
[17] | Schaftingen, J. Van, Estimates for \(L^1\)-vector fields, C. R., Math., Acad. Sci. Paris, 339, 3, 181-186 (2004) ·Zbl 1049.35069 ·doi:10.1016/j.crma.2004.05.013 |
[18] | Schaftingen, J. Van, Estimates for \(L^1\)-vector fields under higher-order differential conditions, J. Eur. Math. Soc., 10, 4, 867-882 (2008) ·Zbl 1228.46034 ·doi:10.4171/JEMS/133 |
[19] | Schaftingen, J. Van, Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc., 15, 3, 877-921 (2013) ·Zbl 1284.46032 ·doi:10.4171/JEMS/380 |
[20] | Schaftingen, J. Van, Limiting Bourgain-Brezis estimates for systems of linear differential equations: Theme and variations, J. Fixed Point Theory Appl., 15, 2, 273-297 (2014) ·Zbl 1311.35005 ·doi:10.1007/s11784-014-0177-0 |
[21] | Stolyarov, D. M., Bilinear embedding theorems for differential operators in \(\mathbb{R}^2\), J. Math. Sci., 209, 5, 792-807 (2015) ·Zbl 1331.35016 ·doi:10.1007/s10958-015-2527-x |
[22] | Stolyarov, D., Martingale interpretation of weakly cancelling differential operators, J. Math. Sci., 251, 2, 286-290 (2020) ·Zbl 1466.46030 ·doi:10.1007/s10958-020-05089-1 |