Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Higher genus Gromov-Witten theory of \(\mathsf{Hilb}^n(\mathbb{C}^2)\) and \(\mathsf{CohFTs}\) associated to local curves.(English)Zbl 1461.14076

Summary: We study the higher genus equivariant Gromov-Witten theory of the Hilbert scheme of \(n\) points of \(\mathbb{C}^2\). Since the equivariant quantum cohomology, computed byA. Okounkov andR. Pandharipande [Invent. Math. 179, No. 3, 523–557 (2010;Zbl 1198.14054)], is semisimple, the higher genus theory is determined by an \(\mathsf{R}\)-matrix via the Givental-Teleman classification of Cohomological Field Theories (CohFTs). We uniquely specify the required \(\mathsf{R}\)-matrix by explicit data in degree 0. As a consequence, we lift the basic triangle of equivalences relating the equivariant quantum cohomology of the Hilbert scheme \(\mathsf{Hilb}^n(\mathbb{C}^2)\) and the Gromov-Witten/Donaldson-Thomas correspondence for 3-fold theories of local curves to a triangle of equivalences in all higher genera. The proof uses the analytic continuation of the fundamental solution of the QDE of the Hilbert scheme of points determined byA. Okounkov andR. Pandharipande [Transform. Groups 15, No. 4, 965–982 (2010;Zbl 1213.14108)]. The GW/DT edge of the triangle in higher genus concerns new CohFTs defined by varying the 3-fold local curve in the moduli space of stable curves. The equivariant orbifold Gromov-Witten theory of the symmetric product \(\mathsf{Sym}^n(\mathbb{C}^2)\) is also shown to be equivalent to the theories of the triangle in all genera. The result establishes a complete case of the crepant resolution conjecture [J. Bryan andT. Graber, Proc. Symp. Pure Math. 80, 23–42 (2009;Zbl 1198.14053);T. Coates et al., Geom. Topol. 13, No. 5, 2675–2744 (2009;Zbl 1184.53086);T. Coates andY. Ruan, Ann. Inst. Fourier 63, No. 2, 431–478 (2013;Zbl 1275.53083)].

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds

Cite

References:

[1]J.Bryan and T.Graber, ‘The crepant resolution conjecture’, inAlgebraic Geometry-Seattle 2005, Part 1, Proceedings of Symposia in Pure Mathematics, 80 (American Mathematical Society, Providence, RI, 2009), 23-42. ·Zbl 1198.14053
[2]J.Bryan and R.Pandharipande, ‘The local Gromov-Witten theory of curves’, J. Amer. Math. Soc.21 (2008), 101-136. ·Zbl 1126.14062
[3]R.Cavalieri, ‘A topological quantum field theory of intersection numbers on moduli spaces of admissible covers’, Algebra Number Theory1 (2007), 35-66. ·Zbl 1166.14036
[4]T.Coates and A.Givental, ‘Quantum Riemann-Roch, Lefschetz and Serre’, Ann. of Math. (2)165 (2007), 15-53. ·Zbl 1189.14063
[5]T.Coates, H.Iritani and H.-H.Tseng, ‘Wall-crossings in toric Gromov-Witten theory. I. Crepant examples’, Geom. Topol.13 (2009), 2675-2744. ·Zbl 1184.53086
[6]T.Coates and Y.Ruan, ‘Quantum cohomology and crepant resolutions: a conjecture’, Ann. Inst. Fourier (Grenoble)63 (2013), 431-478. ·Zbl 1275.53083
[7]B.Dubrovin, ‘Geometry of 2D topological filed theories’, inIntegrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Mathematics, 1620 (Springer, Berlin, 1996), 120-348. ·Zbl 0841.58065
[8]C.Faber and N.Pagani, ‘The class of the bielliptic locus in genus 3’, Int. Math. Res. Not. IMRN12 (2015), 3943-3961. ·Zbl 1329.14061
[9]C.Faber and R.Pandharipande, ‘Hodge integrals and Gromov-Witten theory’, Invent. Math.139 (2000), 173-199. ·Zbl 0960.14031
[10]W.Fulton and R.Pandharipande, ‘Notes on stable maps and quantum cohomology’, inAlgebraic Geometry-Santa Cruz 1995, Part 2, Proceedings of Symposia in Applied Mathematics, 62 (American Mathematical Society, Providence, RI, 1997), 45-96. ·Zbl 0898.14018
[11]A.Givental, ‘Elliptic Gromov-Witten invariants and the generalized mirror conjecture’, inIntegrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997) (World Scientific Publishing, River Edge, NJ, 1998), 107-155. ·Zbl 0961.14036
[12]A.Givental, ‘Gromov-Witten invariants and quantization of quadratic Hamiltonians’, Mosc. Math. J.4 (2001), 551-568. ·Zbl 1008.53072
[13]A.Givental, ‘Semisimple Frobenius structures at higher genus’, Int. Math. Res. Not. IMRN23 (2001), 1265-1286. ·Zbl 1074.14532
[14]L.Göttsche, ‘Hilbert schemes of points on surfaces’, inICM Proceedings, Vol. II (Higher Education Press, Beijing, China, 2002), 483-494. ·Zbl 1055.14005
[15]T.Graber and R.Pandharipande, ‘Localization of virtual classes’, Invent. Math.135 (1999), 487-518. ·Zbl 0953.14035
[16]I.Grojnowski, ‘Instantons and affine algebras I: the Hilbert scheme and vertex operators’, Math. Res. Lett.3 (1996), 275-291. ·Zbl 0879.17011
[17]M.Haiman, ‘Combinatorics, symmetric functions and Hilbert schemes’, inCurrent Developments in Mathematics 2002, Vol. 1 (International Press of Boston, Somerville, MA, USA, 2002), 39-111. ·Zbl 1053.05118
[18]M.Haiman, ‘Notes on Macdonald polynomials and the geometry of Hilbert schemes’, inSymmetric Functions 2001: Surveys of Developments and Perspectives, Proceedings of the NATO Advanced Study Institute held in Cambridge, June 25-July 6, 2001 (ed. S.Fomin) (Kluwer, Dordrecht, 2002), 1-64. ·Zbl 1057.14011
[19]E. L.Ince, Ordinary Differential Equations (Dover Publications, New York, 1944). ·Zbl 0063.02971
[20]M.Kontsevich and Y.Manin, ‘Gromov-Witten classes, quantum cohomology, and enumerative geometry’, Comm. Math. Phys.164 (1994), 525-562. ·Zbl 0853.14020
[21]Y.-P.Lee and R.Pandharipande, ‘Frobenius manifolds, Gromov-Witten theory, and Virasoro constraints’, Preprint available from the authors’ website: https://people.math.ethz.ch/∼rahul/Part1.ps.
[22]M.Lehn, ‘Chern classes of tautological sheaves on Hilbert schemes of points on surfaces’, Invent. Math.136 (1999), 157-207. ·Zbl 0919.14001
[23]I.Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn, Oxford Mathematical Monographs (Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995), With contributions by A. Zelevinsky. ·Zbl 0824.05059
[24]Y.Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, American Mathematical Society Colloquium Publications, 47 (American Mathematical Society, Providence, RI, 1999). ·Zbl 0952.14032
[25]A.Marian, D.Oprea, R.Pandharipande, A.Pixton and D.Zvonkine, ‘The Chern character of the Verlinde bundle over the moduli space of stable curves’, J. Reine Angew. Math.732 (2017), 147-163. ·Zbl 1453.14138
[26]D.Maulik, R.Pandharipande and R.Thomas, ‘Curves on K3 surfaces and modular forms’, J. Topol.3 (2010), 937-996. ·Zbl 1207.14058
[27]D.Mumford, ‘Towards an enumerative geometry of the moduli space of curves’, inArithmetics and Geometry, Vol. 2 (eds. M.Artin and J.Tate) (Birkhäuser, Boston, MA, USA, 1983), 271-328. ·Zbl 0554.14008
[28]H.Nakajima, Lectures on Hilbert Schemes of Points on Surfaces, University Lecture Series, 18 (American Mathematical Society, Providence, RI, 1999). ·Zbl 0949.14001
[29]A.Okounkov and R.Pandharipande, ‘Quantum cohomology of the Hilbert scheme of points in the plane’, Invent. Math.179 (2010), 523-557. ·Zbl 1198.14054
[30]A.Okounkov and R.Pandharipande, ‘The quantum differential equation of the Hilbert scheme of points in the plane’, Transform. Groups15 (2010), 965-982. ·Zbl 1213.14108
[31]A.Okounkov and R.Pandharipande, ‘The local Donaldson-Thomas theory of curves’, Geom. Topol.14 (2010), 1503-1567. ·Zbl 1205.14067
[32]R.Pandharipande, ‘Descendents for stable pairs on 3-folds’, inModern Geometry: A Celebration of the Work of Simon Donaldson, Proceedings of Symposia in Pure Mathematics, 99 (2018), 251-288. ·Zbl 1452.14059
[33]R.Pandharipande, ‘Cohomological field theory calculations’, inProceedings of the ICM, Vol. 1 (World Scientific, Rio de Janeiro, 2018), 869-898. ·Zbl 1441.14185
[34]R.Pandharipande and A.Pixton, ‘GW/P descendent correspondence for toric 3-folds’, Geom. Topol.18 (2014), 2747-2821. ·Zbl 1342.14114
[35]R.Pandharipande, A.Pixton and D.Zvonkine, ‘Relations on M_g, n via 3-spin structures’, J. Amer. Math. Soc.28 (2015), 279-309. ·Zbl 1315.14037
[36]R.Pandharipande and R.Thomas, ‘Counting curves via stable pairs in the derived category’, Invent. Math.178 (2009), 407-447. ·Zbl 1204.14026
[37]D. L.Russell and Y.Subiya, ‘The problem of singular perturbations of linear ordinary differential equations at regular singular points, I’, Funkcial. Ekvac.9 (1966), 207-218. ·Zbl 0166.07703
[38]D. L.Russell and Y.Subiya, ‘The problem of singular perturbations of linear ordinary differential equations at regular singular points, II’, Funkcial. Ekvac.11 (1968), 175-184. ·Zbl 0184.12203
[39]J.Schmitt and J.van Zelm, ‘Intersections of loci of admissible covers with tautological classes’, Preprint, 2018, arXiv:1808.05817. ·Zbl 1461.14037
[40]C.Teleman, ‘The structure of 2D semi-simple field theories’, Invent. Math.188 (2012), 525-588. ·Zbl 1248.53074
[41]H.-H.Tseng, ‘Orbifold quantum Riemann-Roch, Lefschetz and Serre’, Geom. Topol.14 (2010), 1-81. ·Zbl 1178.14058
[42]W.Wasow, Asymptotic Expansions for Ordinary Differential Equations, Pure and Applied Mathematics, XIV (Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965). ·Zbl 0169.10903
[43]E.Whittaker and G.Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Reprint of the fourth (1927) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. ·Zbl 0951.30002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp