[1] | J.Bryan and T.Graber, ‘The crepant resolution conjecture’, inAlgebraic Geometry-Seattle 2005, Part 1, Proceedings of Symposia in Pure Mathematics, 80 (American Mathematical Society, Providence, RI, 2009), 23-42. ·Zbl 1198.14053 |
[2] | J.Bryan and R.Pandharipande, ‘The local Gromov-Witten theory of curves’, J. Amer. Math. Soc.21 (2008), 101-136. ·Zbl 1126.14062 |
[3] | R.Cavalieri, ‘A topological quantum field theory of intersection numbers on moduli spaces of admissible covers’, Algebra Number Theory1 (2007), 35-66. ·Zbl 1166.14036 |
[4] | T.Coates and A.Givental, ‘Quantum Riemann-Roch, Lefschetz and Serre’, Ann. of Math. (2)165 (2007), 15-53. ·Zbl 1189.14063 |
[5] | T.Coates, H.Iritani and H.-H.Tseng, ‘Wall-crossings in toric Gromov-Witten theory. I. Crepant examples’, Geom. Topol.13 (2009), 2675-2744. ·Zbl 1184.53086 |
[6] | T.Coates and Y.Ruan, ‘Quantum cohomology and crepant resolutions: a conjecture’, Ann. Inst. Fourier (Grenoble)63 (2013), 431-478. ·Zbl 1275.53083 |
[7] | B.Dubrovin, ‘Geometry of 2D topological filed theories’, inIntegrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Mathematics, 1620 (Springer, Berlin, 1996), 120-348. ·Zbl 0841.58065 |
[8] | C.Faber and N.Pagani, ‘The class of the bielliptic locus in genus 3’, Int. Math. Res. Not. IMRN12 (2015), 3943-3961. ·Zbl 1329.14061 |
[9] | C.Faber and R.Pandharipande, ‘Hodge integrals and Gromov-Witten theory’, Invent. Math.139 (2000), 173-199. ·Zbl 0960.14031 |
[10] | W.Fulton and R.Pandharipande, ‘Notes on stable maps and quantum cohomology’, inAlgebraic Geometry-Santa Cruz 1995, Part 2, Proceedings of Symposia in Applied Mathematics, 62 (American Mathematical Society, Providence, RI, 1997), 45-96. ·Zbl 0898.14018 |
[11] | A.Givental, ‘Elliptic Gromov-Witten invariants and the generalized mirror conjecture’, inIntegrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997) (World Scientific Publishing, River Edge, NJ, 1998), 107-155. ·Zbl 0961.14036 |
[12] | A.Givental, ‘Gromov-Witten invariants and quantization of quadratic Hamiltonians’, Mosc. Math. J.4 (2001), 551-568. ·Zbl 1008.53072 |
[13] | A.Givental, ‘Semisimple Frobenius structures at higher genus’, Int. Math. Res. Not. IMRN23 (2001), 1265-1286. ·Zbl 1074.14532 |
[14] | L.Göttsche, ‘Hilbert schemes of points on surfaces’, inICM Proceedings, Vol. II (Higher Education Press, Beijing, China, 2002), 483-494. ·Zbl 1055.14005 |
[15] | T.Graber and R.Pandharipande, ‘Localization of virtual classes’, Invent. Math.135 (1999), 487-518. ·Zbl 0953.14035 |
[16] | I.Grojnowski, ‘Instantons and affine algebras I: the Hilbert scheme and vertex operators’, Math. Res. Lett.3 (1996), 275-291. ·Zbl 0879.17011 |
[17] | M.Haiman, ‘Combinatorics, symmetric functions and Hilbert schemes’, inCurrent Developments in Mathematics 2002, Vol. 1 (International Press of Boston, Somerville, MA, USA, 2002), 39-111. ·Zbl 1053.05118 |
[18] | M.Haiman, ‘Notes on Macdonald polynomials and the geometry of Hilbert schemes’, inSymmetric Functions 2001: Surveys of Developments and Perspectives, Proceedings of the NATO Advanced Study Institute held in Cambridge, June 25-July 6, 2001 (ed. S.Fomin) (Kluwer, Dordrecht, 2002), 1-64. ·Zbl 1057.14011 |
[19] | E. L.Ince, Ordinary Differential Equations (Dover Publications, New York, 1944). ·Zbl 0063.02971 |
[20] | M.Kontsevich and Y.Manin, ‘Gromov-Witten classes, quantum cohomology, and enumerative geometry’, Comm. Math. Phys.164 (1994), 525-562. ·Zbl 0853.14020 |
[21] | Y.-P.Lee and R.Pandharipande, ‘Frobenius manifolds, Gromov-Witten theory, and Virasoro constraints’, Preprint available from the authors’ website: https://people.math.ethz.ch/∼rahul/Part1.ps. |
[22] | M.Lehn, ‘Chern classes of tautological sheaves on Hilbert schemes of points on surfaces’, Invent. Math.136 (1999), 157-207. ·Zbl 0919.14001 |
[23] | I.Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn, Oxford Mathematical Monographs (Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995), With contributions by A. Zelevinsky. ·Zbl 0824.05059 |
[24] | Y.Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, American Mathematical Society Colloquium Publications, 47 (American Mathematical Society, Providence, RI, 1999). ·Zbl 0952.14032 |
[25] | A.Marian, D.Oprea, R.Pandharipande, A.Pixton and D.Zvonkine, ‘The Chern character of the Verlinde bundle over the moduli space of stable curves’, J. Reine Angew. Math.732 (2017), 147-163. ·Zbl 1453.14138 |
[26] | D.Maulik, R.Pandharipande and R.Thomas, ‘Curves on K3 surfaces and modular forms’, J. Topol.3 (2010), 937-996. ·Zbl 1207.14058 |
[27] | D.Mumford, ‘Towards an enumerative geometry of the moduli space of curves’, inArithmetics and Geometry, Vol. 2 (eds. M.Artin and J.Tate) (Birkhäuser, Boston, MA, USA, 1983), 271-328. ·Zbl 0554.14008 |
[28] | H.Nakajima, Lectures on Hilbert Schemes of Points on Surfaces, University Lecture Series, 18 (American Mathematical Society, Providence, RI, 1999). ·Zbl 0949.14001 |
[29] | A.Okounkov and R.Pandharipande, ‘Quantum cohomology of the Hilbert scheme of points in the plane’, Invent. Math.179 (2010), 523-557. ·Zbl 1198.14054 |
[30] | A.Okounkov and R.Pandharipande, ‘The quantum differential equation of the Hilbert scheme of points in the plane’, Transform. Groups15 (2010), 965-982. ·Zbl 1213.14108 |
[31] | A.Okounkov and R.Pandharipande, ‘The local Donaldson-Thomas theory of curves’, Geom. Topol.14 (2010), 1503-1567. ·Zbl 1205.14067 |
[32] | R.Pandharipande, ‘Descendents for stable pairs on 3-folds’, inModern Geometry: A Celebration of the Work of Simon Donaldson, Proceedings of Symposia in Pure Mathematics, 99 (2018), 251-288. ·Zbl 1452.14059 |
[33] | R.Pandharipande, ‘Cohomological field theory calculations’, inProceedings of the ICM, Vol. 1 (World Scientific, Rio de Janeiro, 2018), 869-898. ·Zbl 1441.14185 |
[34] | R.Pandharipande and A.Pixton, ‘GW/P descendent correspondence for toric 3-folds’, Geom. Topol.18 (2014), 2747-2821. ·Zbl 1342.14114 |
[35] | R.Pandharipande, A.Pixton and D.Zvonkine, ‘Relations on M_g, n via 3-spin structures’, J. Amer. Math. Soc.28 (2015), 279-309. ·Zbl 1315.14037 |
[36] | R.Pandharipande and R.Thomas, ‘Counting curves via stable pairs in the derived category’, Invent. Math.178 (2009), 407-447. ·Zbl 1204.14026 |
[37] | D. L.Russell and Y.Subiya, ‘The problem of singular perturbations of linear ordinary differential equations at regular singular points, I’, Funkcial. Ekvac.9 (1966), 207-218. ·Zbl 0166.07703 |
[38] | D. L.Russell and Y.Subiya, ‘The problem of singular perturbations of linear ordinary differential equations at regular singular points, II’, Funkcial. Ekvac.11 (1968), 175-184. ·Zbl 0184.12203 |
[39] | J.Schmitt and J.van Zelm, ‘Intersections of loci of admissible covers with tautological classes’, Preprint, 2018, arXiv:1808.05817. ·Zbl 1461.14037 |
[40] | C.Teleman, ‘The structure of 2D semi-simple field theories’, Invent. Math.188 (2012), 525-588. ·Zbl 1248.53074 |
[41] | H.-H.Tseng, ‘Orbifold quantum Riemann-Roch, Lefschetz and Serre’, Geom. Topol.14 (2010), 1-81. ·Zbl 1178.14058 |
[42] | W.Wasow, Asymptotic Expansions for Ordinary Differential Equations, Pure and Applied Mathematics, XIV (Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965). ·Zbl 0169.10903 |
[43] | E.Whittaker and G.Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Reprint of the fourth (1927) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. ·Zbl 0951.30002 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.