[1] | Bhargava, M. and Hanke, J., Universal quadratic forms and the 290-theorem, Invent. Math., to appear. |
[2] | Blomer, V. and Kala, V., Number fields without n-ary universal quadratic forms, Math. Proc. Cambridge Philos. Soc. 159(2) (2015), 239-252. ·Zbl 1371.11084 |
[3] | Blomer, V. and Kala, V., On the rank of universal quadratic forms over real quadratic fields, Doc. Math. 23 (2018), 15-34. ·Zbl 1396.11061 |
[4] | Brunotte, H., Zur Zerlegung totalpositiver Zahlen in Ordnungen totalreeller algebraischer Zahlkörper, Arch. Math. (Basel)41(6) (1983), 502-503. ·Zbl 0528.12007 |
[5] | Chan, W. K., Kim, M.-H. and Raghavan, S., Ternary universal integral quadratic forms over real quadratic fields, Japan. J. Math. 22 (1996), 263-273. ·Zbl 0868.11020 |
[6] | Čech, M., Lachman, D., Svoboda, J., Tinková, M. and Zemková, K., Universal quadratic forms and indecomposables over biquadratic fields, Math. Nachr. 292 (2019), 540-555. doi: doi:10.1002/mana.201800109 ·Zbl 1456.11036 |
[7] | Deutsch, J. I., Universality of a non-classical integral quadratic form over \(\mathbb{Q}[\sqrt 5]\), Acta Arith. 136 (2009), 229-242. ·Zbl 1234.11040 |
[8] | Dress, A. and Scharlau, R., Indecomposable totally positive numbers in real quadratic orders, J. Num. Theory14 (1982), 292-306. ·Zbl 0507.12002 |
[9] | Earnest, A. G. and Khosravani, A., Universal positive quaternary quadratic lattices over totally real number fields, Mathematika44 (1997), 342-347. ·Zbl 0895.11017 |
[10] | Jarvis, F., Algebraic Number Theory (Springer, 2007). ·Zbl 1303.11001 |
[11] | Jang, S. W. and Kim, B. M., A refinement of the Dress-Scharlau theorem, J. Number Theory158 (2016), 234-243. ·Zbl 1331.11092 |
[12] | Hsia, John S., Kitaoka, Yoshiyuki and Kneser, Martin, Representations of positive definite quadratic forms, J. Reine Angew. Math. 301 (1978), 132-141. ·Zbl 0374.10013 |
[13] | Kala, V., Universal quadratic forms and elements of small norm in real quadratic fields, Bull. Aust. Math. Soc. 94 (2016), 7-14. ·Zbl 1345.11025 |
[14] | Kala, V., Norms of indecomposable integers in real quadratic fields, J. Number Theory166 (2016), 193-207. ·Zbl 1414.11131 |
[15] | Kim, B. M., Finiteness of real quadratic fields which admit positive integral diagonal septenary universal forms, Manuscr. Math. 99 (1999), 181-184. ·Zbl 0961.11016 |
[16] | Kim, B. M., Universal octonary diagonal forms over some real quadratic fields, Commentarii Math. Helv. 75 (2000), 410-414. ·Zbl 1120.11301 |
[17] | Kala, V. and Svoboda, J., Universal quadratic forms over multiquadratic fields, Ramanujan J. 48 (2019), 151-157. ·Zbl 1428.11071 |
[18] | Maass, H., Über die Darstellung total positiver Zahlen des Körpers \(R(\sqrt{5})\) als Summe von drei Quadraten, Abh. Math. Sem. Hamburg14 (1941), 185-191. ·JFM 67.0103.02 |
[19] | Milne, J. S., Algebraic Number Theory (v3.07), 2017, Available at www.jmilne.org/math/. |
[20] | Mazur, M. and Ullom, S. V., Galois module structure of units in real biquadratic number fields, Acta Arithmetica111(2), (2004), 105-124. ·Zbl 1060.11070 |
[21] | O’Meara, O. T., Introduction to Quadratic Forms (Springer Verlag, 1973). ·Zbl 0259.10018 |
[22] | Perron, O., Die Lehre von den Kettenbrüchen (B. G. Teubner, 1913). ·JFM 43.0283.04 |
[23] | Ross, A. E., On representation of integers by quadratic forms, Proc. Nat. Acad. Sci. 18 (1932), 600-608. ·Zbl 0005.24503 |
[24] | Sasaki, H., Quaternary universal forms over \(\mathbb{Q}[\sqrt 13]\), Ramanujan J. 18 (2009), 73-80. ·Zbl 1193.11033 |
[25] | Siegel, C. L., Sums of m-th powers of algebraic integers, Ann. Math. 46 (1945), 313-339. ·Zbl 0063.07010 |
[26] | Ramanujan, S., On the expression of a number in the form ax^2 + by^2 + cz^2 + du^2, Proc. Cambridge Philos. Soc19 (1917), 11-21. ·JFM 46.0240.01 |
[27] | Tinková, M. and Voutier, P., Indecomposable integers in real quadratic fields, J. Number Theory, 25 pp., to appear. ·Zbl 1445.11120 |
[28] | Williams, K. S., Integers of biquadratic fields, Canad. Math. Bull. 13 (1970), 519-526. ·Zbl 0205.35401 |
[29] | Yatsyna, P., A lower bound for the rank of a universal quadratic form with integer coefficients in a totally real number field, Comment Math. Helv. 94(2) (2019), 221-239. ·Zbl 1471.11128 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.