Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

There are no universal ternary quadratic forms over biquadratic fields.(English)Zbl 1460.11042

The main result is the following theorem: For any totally real biquadratic number field \(K\) there are no universal classic totally positive definite ternary quadratic forms over the ring of algebraic integers \(O_K\).
The same conclusion is correct for all totally real number fields \(K\) with \(\sqrt{2}\not\in K\) which contain a nonsquare totally positive unit \(\varepsilon\) such that \(2\varepsilon\) is not a square in \(K\). The main tools for the proof are results about additively indecomposable elements of \(O_K\).

MSC:

11E20 General ternary and quaternary quadratic forms; forms of more than two variables
11E12 Quadratic forms over global rings and fields
11R04 Algebraic numbers; rings of algebraic integers
11R80 Totally real fields

Cite

References:

[1]Bhargava, M. and Hanke, J., Universal quadratic forms and the 290-theorem, Invent. Math., to appear.
[2]Blomer, V. and Kala, V., Number fields without n-ary universal quadratic forms, Math. Proc. Cambridge Philos. Soc. 159(2) (2015), 239-252. ·Zbl 1371.11084
[3]Blomer, V. and Kala, V., On the rank of universal quadratic forms over real quadratic fields, Doc. Math. 23 (2018), 15-34. ·Zbl 1396.11061
[4]Brunotte, H., Zur Zerlegung totalpositiver Zahlen in Ordnungen totalreeller algebraischer Zahlkörper, Arch. Math. (Basel)41(6) (1983), 502-503. ·Zbl 0528.12007
[5]Chan, W. K., Kim, M.-H. and Raghavan, S., Ternary universal integral quadratic forms over real quadratic fields, Japan. J. Math. 22 (1996), 263-273. ·Zbl 0868.11020
[6]Čech, M., Lachman, D., Svoboda, J., Tinková, M. and Zemková, K., Universal quadratic forms and indecomposables over biquadratic fields, Math. Nachr. 292 (2019), 540-555. doi: doi:10.1002/mana.201800109 ·Zbl 1456.11036
[7]Deutsch, J. I., Universality of a non-classical integral quadratic form over \(\mathbb{Q}[\sqrt 5]\), Acta Arith. 136 (2009), 229-242. ·Zbl 1234.11040
[8]Dress, A. and Scharlau, R., Indecomposable totally positive numbers in real quadratic orders, J. Num. Theory14 (1982), 292-306. ·Zbl 0507.12002
[9]Earnest, A. G. and Khosravani, A., Universal positive quaternary quadratic lattices over totally real number fields, Mathematika44 (1997), 342-347. ·Zbl 0895.11017
[10]Jarvis, F., Algebraic Number Theory (Springer, 2007). ·Zbl 1303.11001
[11]Jang, S. W. and Kim, B. M., A refinement of the Dress-Scharlau theorem, J. Number Theory158 (2016), 234-243. ·Zbl 1331.11092
[12]Hsia, John S., Kitaoka, Yoshiyuki and Kneser, Martin, Representations of positive definite quadratic forms, J. Reine Angew. Math. 301 (1978), 132-141. ·Zbl 0374.10013
[13]Kala, V., Universal quadratic forms and elements of small norm in real quadratic fields, Bull. Aust. Math. Soc. 94 (2016), 7-14. ·Zbl 1345.11025
[14]Kala, V., Norms of indecomposable integers in real quadratic fields, J. Number Theory166 (2016), 193-207. ·Zbl 1414.11131
[15]Kim, B. M., Finiteness of real quadratic fields which admit positive integral diagonal septenary universal forms, Manuscr. Math. 99 (1999), 181-184. ·Zbl 0961.11016
[16]Kim, B. M., Universal octonary diagonal forms over some real quadratic fields, Commentarii Math. Helv. 75 (2000), 410-414. ·Zbl 1120.11301
[17]Kala, V. and Svoboda, J., Universal quadratic forms over multiquadratic fields, Ramanujan J. 48 (2019), 151-157. ·Zbl 1428.11071
[18]Maass, H., Über die Darstellung total positiver Zahlen des Körpers \(R(\sqrt{5})\) als Summe von drei Quadraten, Abh. Math. Sem. Hamburg14 (1941), 185-191. ·JFM 67.0103.02
[19]Milne, J. S., Algebraic Number Theory (v3.07), 2017, Available at www.jmilne.org/math/.
[20]Mazur, M. and Ullom, S. V., Galois module structure of units in real biquadratic number fields, Acta Arithmetica111(2), (2004), 105-124. ·Zbl 1060.11070
[21]O’Meara, O. T., Introduction to Quadratic Forms (Springer Verlag, 1973). ·Zbl 0259.10018
[22]Perron, O., Die Lehre von den Kettenbrüchen (B. G. Teubner, 1913). ·JFM 43.0283.04
[23]Ross, A. E., On representation of integers by quadratic forms, Proc. Nat. Acad. Sci. 18 (1932), 600-608. ·Zbl 0005.24503
[24]Sasaki, H., Quaternary universal forms over \(\mathbb{Q}[\sqrt 13]\), Ramanujan J. 18 (2009), 73-80. ·Zbl 1193.11033
[25]Siegel, C. L., Sums of m-th powers of algebraic integers, Ann. Math. 46 (1945), 313-339. ·Zbl 0063.07010
[26]Ramanujan, S., On the expression of a number in the form ax^2 + by^2 + cz^2 + du^2, Proc. Cambridge Philos. Soc19 (1917), 11-21. ·JFM 46.0240.01
[27]Tinková, M. and Voutier, P., Indecomposable integers in real quadratic fields, J. Number Theory, 25 pp., to appear. ·Zbl 1445.11120
[28]Williams, K. S., Integers of biquadratic fields, Canad. Math. Bull. 13 (1970), 519-526. ·Zbl 0205.35401
[29]Yatsyna, P., A lower bound for the rank of a universal quadratic form with integer coefficients in a totally real number field, Comment Math. Helv. 94(2) (2019), 221-239. ·Zbl 1471.11128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp