Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Brownian Gibbs property for Airy line ensembles.(English)Zbl 1459.82117

Summary: Consider a collection of \(N\) Brownian bridges \(B_{i}:[-N,N] \to \mathbb{R}, B _{i }(-N) = B _{i}(N)=0, 1\leq i\leq N\), conditioned not to intersect. The edge-scaling limit of this system is obtained by taking a weak limit as \(N\rightarrow \infty \) of the collection of curves scaled so that the point \((0,2^{1/2} N)\) is fixed and space is squeezed, horizontally by a factor of \(N ^{2/3}\) and vertically by \(N ^{1/3}\). If a parabola is added to each of the curves of this scaling limit, an \(x\)-translation invariant process sometimes called the multi-line Airy process is obtained. We prove the existence of a version of this process (which we call the Airy line ensemble) in which the curves are almost surely everywhere continuous and non-intersecting. This process naturally arises in the study of growth processes and random matrix ensembles, as do related processes with “wanderers” and “outliers”. We formulate our results to treat these relatives as well.
Note that the law of the finite collection of Brownian bridges above has the property – called the Brownian Gibbs property – of being invariant under the following action. Select an index \(1\leq k\leq N\) and erase \(B _{k }\) on a fixed time interval \((a,b)\subseteq ( - N,N)\); then replace this erased curve with a new curve on \((a,b)\) according to the law of a Brownian bridge between the two existing endpoints \((a,B _{k }(a))\) and \((b,B _{k }(b))\), conditioned to intersect neither the curve above nor the one below. We show that this property is preserved under the edge-scaling limit and thus establish that the Airy line ensemble has the Brownian Gibbs property.
An immediate consequence of the Brownian Gibbs property is a confirmation of the prediction ofM. Prähofer andH. Spohn [J. Stat. Phys. 108, No. 5–6, 1071–1106 (2002;Zbl 1025.82010)] that each line of the Airy line ensemble is locally absolutely continuous with respect to Brownian motion. We also obtain a proof of the long-standing conjecture ofK. Johansson [Commun. Math. Phys. 242, No. 1–2, 277–329 (2003;Zbl 1031.60084)] that the top line of the Airy line ensemble minus a parabola attains its maximum at a unique point. This establishes the asymptotic law of the transversal fluctuation of last passage percolation with geometric weights. Our probabilistic approach complements the perspective of exactly solvable systems which is often taken in studying the multi-line Airy process, and readily yields several other interesting properties of this process.

MSC:

82B43 Percolation
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
60J65 Brownian motion
60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)

Cite

References:

[1]Adler, M., van Moerbeke, P.: PDEs for the joint distributions of the Dyson, Airy and sine processes. Ann. Probab. 33, 1326-1361 (2005) ·Zbl 1093.60021 ·doi:10.1214/009117905000000107
[2]Adler, M., Delépine, J., van Moerbeke, P.: Dyson’s nonintersecting Brownian motions with a few outliers. Commun. Pure Appl. Math. 62, 334-395 (2009) ·Zbl 1166.60048 ·doi:10.1002/cpa.20264
[3]Adler, M., Ferrari, P.L., van Moerbeke, P.: Airy processes with wanderers and new universality classes. Ann. Probab. 38, 714-769 (2010) ·Zbl 1200.60069 ·doi:10.1214/09-AOP493
[4]Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension 1+1. Phys. Rev. Lett. 105, 090603 (2010) ·Zbl 1292.82014 ·doi:10.1103/PhysRevLett.105.090603
[5]Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466-537 (2011) ·Zbl 1222.82070 ·doi:10.1002/cpa.20347
[6]Baik, J., Suidan, T.M.: Random matrix central limit theorems for nonintersecting random walks. Ann. Probab. 35, 1807-1834 (2007) ·Zbl 1131.60015 ·doi:10.1214/009117906000001105
[7]Baik, J., Deift, P.A., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12, 1119-1178 (1999) ·Zbl 0932.05001 ·doi:10.1090/S0894-0347-99-00307-0
[8]Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Commun. Pure Appl. Math. 63, 1017-1070 (2010) ·Zbl 1194.82067
[9]Baik, J., Liechty, K., Schehr, G.: On the joint distribution of the maximum and its position of the Airy2 process minus a parabola. J. Math. Phys. 53, 083303 (2012) ·Zbl 1278.82070 ·doi:10.1063/1.4746694
[10]Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968) ·Zbl 0172.21201
[11]Borodin, A., Duits, M.: Limits of determinantal processes near a tacnode. Ann. Inst. Henri Poincaré B, Probab. Stat. 47, 243-258 (2011) ·Zbl 1208.82039 ·doi:10.1214/10-AIHP373
[12]Borodin, A., Gorin, V.: Markov processes of infinitely many nonintersecting random walks. arXiv:1106.1299 ·Zbl 1278.60113
[13]Borodin, A., Olshanski, G.: Markov processes on the path space of the Gelfand-Tsetlin graph and on its boundary. arXiv:1009.2029 ·Zbl 1260.60149
[14]Borodin, A., Péché, S.: Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132, 275-290 (2008) ·Zbl 1145.82021 ·doi:10.1007/s10955-008-9553-8
[15]Borodin, A., Shloshman, S.: Gibbs ensembles of nonintersecting paths. Commun. Math. Phys. 293, 145-170 (2010) ·Zbl 1193.82003 ·doi:10.1007/s00220-009-0906-1
[16]Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. Am. Math. Soc. 14, 297-346 (2001) ·Zbl 1037.82016 ·doi:10.1090/S0894-0347-00-00355-6
[17]Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrix Theory Appl. 1, 1130001 (2012). arXiv:1106.1596 ·Zbl 1247.82040 ·doi:10.1142/S2010326311300014
[18]Corwin, I., Hammond, A.: The H-Brownian Gibbs property of the KPZ line ensemble (in preparation) ·Zbl 1357.82040
[19]Corwin, I., Ferrari, P.L., Péché, S.: Limit processes for TASEP with shocks and rarefaction fans. J. Stat. Phys. 140, 232-267 (2010) ·Zbl 1197.82078 ·doi:10.1007/s10955-010-9995-7
[20]Corwin, I., Quastel, J., Remenik, D.: Continuum statistics of the Airy2 process. arXiv:1106.2717 ·Zbl 1257.82112
[21]de Gennes, P.G.: Soluble model for fibrous structures with steric constraints. J. Chem. Phys. 48, 2257-2259 (1968) ·doi:10.1063/1.1669420
[22]de Haroa, S., Tierz, M.: Brownian motion, Chern-Simons theory, and 2D Yang-Mills. Phys. Lett. B 601, 201-208 (2004) ·Zbl 1247.58020 ·doi:10.1016/j.physletb.2004.09.033
[23]Durrett, R.: Probability: Theory and Examples. Duxbury Press, Belmont (2010) ·Zbl 1202.60001 ·doi:10.1017/CBO9780511779398
[24]Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191-1198 (1962) ·Zbl 0111.32703 ·doi:10.1063/1.1703862
[25]Feierl, T., The height and range of watermelons without wall, No. 5874, 242-253 (2009), Berlin ·Zbl 1267.05238 ·doi:10.1007/978-3-642-10217-2_25
[26]Ferrari, P.L.: From interacting particle systems to random matrices. J. Stat. Mech. P10016 (2010) ·Zbl 1456.82657
[27]Ferrari, P.L., Spohn, H.: Random growth models. arXiv:1003.0881 ·Zbl 1234.60010
[28]Fisher, M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34, 667-729 (1984) ·Zbl 0589.60098 ·doi:10.1007/BF01009436
[29]Fisher, D.S., Huse, D.A.: Directed paths in random potential. Phys. Rev. B 43, 10728-10742 (1991) ·doi:10.1103/PhysRevB.43.10728
[30]Forrester, P.J., Majumdar, S.N., Schehr, G.: Non-intersecting Brownian walkers and Yang-Mills theory on the sphere. Nucl. Phys. B 844, 500-526 (2011) ·Zbl 1207.82022 ·doi:10.1016/j.nuclphysb.2010.11.013
[31]Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732-749 (1977) ·doi:10.1103/PhysRevA.16.732
[32]Garban, C., Pete, G., Schramm, O.: Pivotal, cluster and interface measures for critical planar percolation (2010). arXiv:1008.1378 ·Zbl 1276.60111
[33]Grabiner, D.: Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. Henri Poincaré B, Probab. Stat. 35, 177-204 (1999) ·Zbl 0937.60075 ·doi:10.1016/S0246-0203(99)80010-7
[34]Guttmann, A.J., Owczarek, A.L., Viennot, X.G.: Vicious walkers and Young tableaux I: without walls. J. Phys. A 31, 8123 (1998) ·Zbl 0930.05098 ·doi:10.1088/0305-4470/31/40/007
[35]Hägg, J.: Local Gaussian fluctuations in the Airy and discrete PNG processes. Ann. Probab. 36, 1059-1092 (2008) ·Zbl 1142.60025 ·doi:10.1214/07-AOP353
[36]Halpin-Healy, T., Zhang, Y.C.: Kinetic roughening, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215-415 (1995) ·doi:10.1016/0370-1573(94)00087-J
[37]Hollander, F.: Random Polymers. École d’Été de Probabilités de Saint-Flour XXXVII. Lecture Notes in Mathematics, vol. 1974. Springer, Berlin (2007)
[38]Huse, D.A., Fisher, M.E.: Commensurate melting, domain walls, and dislocations. Phys. Rev. B 29, 239-270 (1984) ·doi:10.1103/PhysRevB.29.239
[39]Huse, D., Henley, C.: Pinning and roughening of domain walls in Ising systems due to random impurities. Phys. Rev. Lett. 54, 2708-2711 (1985) ·doi:10.1103/PhysRevLett.54.2708
[40]Imamura, T., Sasamoto, T.: Fluctuations of the one-dimensional polynuclear growth model with external sources. Nucl. Phys. B 699, 503-544 (2004) ·Zbl 1123.82352 ·doi:10.1016/j.nuclphysb.2004.07.030
[41]Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437-476 (2000) ·Zbl 0969.15008 ·doi:10.1007/s002200050027
[42]Johansson, K.: Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123, 225-280 (2002) ·Zbl 1008.60019 ·doi:10.1007/s004400100187
[43]Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277-329 (2003) ·Zbl 1031.60084
[44]Johansson, K.: Random Matrices and Determinantal Processes. Ecole de Physique, Les Houches (2005)
[45]Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, New York (1988) ·Zbl 0638.60065 ·doi:10.1007/978-1-4684-0302-2
[46]Kardar, K., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889-892 (1986) ·Zbl 1101.82329 ·doi:10.1103/PhysRevLett.56.889
[47]Karlin, S., McGregor, J.: Coincidence probability. Pac. J. Math. 9, 1141-1164 (1959) ·Zbl 0092.34503 ·doi:10.2140/pjm.1959.9.1141
[48]Katori, M., Tanemura, H.: Noncolliding squared Bessel processes. J. Stat. Phys. 142, 592-615 (2011) ·Zbl 1211.82036 ·doi:10.1007/s10955-011-0117-y
[49]Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163, 1019-1056 (2006) ·Zbl 1154.82007 ·doi:10.4007/annals.2006.163.1019
[50]Liechty, K.: Nonintersecting Brownian excursions on the half-line and discrete Gaussian orthogonal polynomials. J. Stat. Phys. 147, 582 (2012) ·Zbl 1244.82065 ·doi:10.1007/s10955-012-0485-y
[51]McKean, H.P.: Stochastic Integrals. Academic Press, New York (1969) ·Zbl 0191.46603
[52]Minlos, R.A., Shlosman, S., Suhov, Yu.M.: In: On Dobrushin’s Way: From Probability Theory to Statistical Physics. AMS Translations, vol. 198 (2000) ·Zbl 0937.00068
[53]Moreno Flores, G., Quastel, J., Remenik, D.: Endpoint distribution of directed polymers in 1+1 dimensions. arXiv:1106.2716 ·Zbl 1257.82117
[54]Nadal, C., Majumdar, S.N.: Nonintersecting Brownian interfaces and Wishart random matrices. Phys. Rev. E 79, 061117 (2009) ·doi:10.1103/PhysRevE.79.061117
[55]Nagao, T., Forrester, P.J.: Vicious random walkers and a discretization of Gaussian random matrix ensembles. Nucl. Phys. B 620, 551-565 (2002) ·Zbl 0983.60038 ·doi:10.1016/S0550-3213(01)00561-2
[56]O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40, 437-458 (2012). arXiv:0910.0069 ·Zbl 1245.82091 ·doi:10.1214/10-AOP632
[57]O’Connell, N., Warren, J.: A multi-layer extension of the stochastic heat equation. arXiv:1104.3509 ·Zbl 1332.60095
[58]Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16, 581-603 (2003) ·Zbl 1009.05134 ·doi:10.1090/S0894-0347-03-00425-9
[59]Pitman, J.; Yor, M.; Ikeda, N. (ed.); Watanabe, S. (ed.); Fukushima, M. (ed.); Kunita, H. (ed.), Decomposition at the maximum for exclusions and bridges of one-dimensional diffusions, 293-310 (1996), Berlin ·Zbl 0877.60053 ·doi:10.1007/978-4-431-68532-6_19
[60]Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071-1106 (2002) ·Zbl 1025.82010 ·doi:10.1023/A:1019791415147
[61]Quastel, J., Moreno Flores, G.: Intermediate disorder for the O’Connell-Yor model (in preparation)
[62]Rambeau, J., Schehr, G.: Extremal statistics of curved growing interfaces in 1+1 dimensions. Europhys. Lett. 91, 60006 (2010) ·doi:10.1209/0295-5075/91/60006
[63]Rambeau, J., Schehr, G.: Distribution of the time at which N vicious walkers reach their maximal height. Phys. Rev. E 83, 061146 (2011) ·doi:10.1103/PhysRevE.83.061146
[64]Sasamoto, T., Spohn, H.: One-dimensional KPZ equation: an exact solution and its universality. Phys. Rev. Lett. 104, 23 (2010) ·doi:10.1103/PhysRevLett.104.230602
[65]Schehr, G.: Extremes of N vicious walkers for large N: application to the directed polymer and KPZ interfaces. J. Stat. Phys. 149, 385-410 (2012) ·Zbl 1259.82146 ·doi:10.1007/s10955-012-0593-8
[66]Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21-137 (2009) ·Zbl 1210.60051 ·doi:10.1007/s11511-009-0034-y
[67]Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40, 19-73 (2012). arXiv:0911.2446 ·Zbl 1254.60098 ·doi:10.1214/10-AOP617
[68]Sheffield, S.: Random Surfaces. Asterisque, vol. 304 (2005) ·Zbl 1104.60002
[69]Shinault, G., Tracy, C.: Asymptotics for the covariance of the Airy2 process. J. Stat. Phys. 143, 60-71 (2011) ·Zbl 1221.82077 ·doi:10.1007/s10955-011-0155-5
[70]Simon, B.: Trace Ideals and Their Applications. AMS, Providence (2005) ·Zbl 1074.47001
[71]Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. (2000) ·Zbl 0991.60038
[72]Spohn, H., KPZ equation in one dimension and line ensembles, 847-857 (2005), Berlin
[73]Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151-174 (1994) ·Zbl 0789.35152 ·doi:10.1007/BF02100489
[74]Tracy, C., Widom, H.: The Pearcey process. Commun. Math. Phys. 263, 381-400 (2006) ·Zbl 1129.82031 ·doi:10.1007/s00220-005-1506-3
[75]Tracy, C., Widom, H.: Nonintersecting Brownian excursions. Ann. Appl. Probab. 17, 953-979 (2007) ·Zbl 1124.60081 ·doi:10.1214/105051607000000041
[76]Widom, H.: On asymptotics of the Airy process. J. Stat. Phys. 115, 1129-1134 (2004) ·Zbl 1073.82033 ·doi:10.1023/B:JOSS.0000022384.58696.61
[77]Williams, D.: Path decomposition and continuity of local time for one dimensional diffusions I. Proc. Lond. Math. Soc. 28, 738-768 (1974) ·Zbl 0326.60093 ·doi:10.1112/plms/s3-28.4.738
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp