[1] | Adler, M., van Moerbeke, P.: PDEs for the joint distributions of the Dyson, Airy and sine processes. Ann. Probab. 33, 1326-1361 (2005) ·Zbl 1093.60021 ·doi:10.1214/009117905000000107 |
[2] | Adler, M., Delépine, J., van Moerbeke, P.: Dyson’s nonintersecting Brownian motions with a few outliers. Commun. Pure Appl. Math. 62, 334-395 (2009) ·Zbl 1166.60048 ·doi:10.1002/cpa.20264 |
[3] | Adler, M., Ferrari, P.L., van Moerbeke, P.: Airy processes with wanderers and new universality classes. Ann. Probab. 38, 714-769 (2010) ·Zbl 1200.60069 ·doi:10.1214/09-AOP493 |
[4] | Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension 1+1. Phys. Rev. Lett. 105, 090603 (2010) ·Zbl 1292.82014 ·doi:10.1103/PhysRevLett.105.090603 |
[5] | Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466-537 (2011) ·Zbl 1222.82070 ·doi:10.1002/cpa.20347 |
[6] | Baik, J., Suidan, T.M.: Random matrix central limit theorems for nonintersecting random walks. Ann. Probab. 35, 1807-1834 (2007) ·Zbl 1131.60015 ·doi:10.1214/009117906000001105 |
[7] | Baik, J., Deift, P.A., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12, 1119-1178 (1999) ·Zbl 0932.05001 ·doi:10.1090/S0894-0347-99-00307-0 |
[8] | Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Commun. Pure Appl. Math. 63, 1017-1070 (2010) ·Zbl 1194.82067 |
[9] | Baik, J., Liechty, K., Schehr, G.: On the joint distribution of the maximum and its position of the Airy2 process minus a parabola. J. Math. Phys. 53, 083303 (2012) ·Zbl 1278.82070 ·doi:10.1063/1.4746694 |
[10] | Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968) ·Zbl 0172.21201 |
[11] | Borodin, A., Duits, M.: Limits of determinantal processes near a tacnode. Ann. Inst. Henri Poincaré B, Probab. Stat. 47, 243-258 (2011) ·Zbl 1208.82039 ·doi:10.1214/10-AIHP373 |
[12] | Borodin, A., Gorin, V.: Markov processes of infinitely many nonintersecting random walks. arXiv:1106.1299 ·Zbl 1278.60113 |
[13] | Borodin, A., Olshanski, G.: Markov processes on the path space of the Gelfand-Tsetlin graph and on its boundary. arXiv:1009.2029 ·Zbl 1260.60149 |
[14] | Borodin, A., Péché, S.: Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132, 275-290 (2008) ·Zbl 1145.82021 ·doi:10.1007/s10955-008-9553-8 |
[15] | Borodin, A., Shloshman, S.: Gibbs ensembles of nonintersecting paths. Commun. Math. Phys. 293, 145-170 (2010) ·Zbl 1193.82003 ·doi:10.1007/s00220-009-0906-1 |
[16] | Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. Am. Math. Soc. 14, 297-346 (2001) ·Zbl 1037.82016 ·doi:10.1090/S0894-0347-00-00355-6 |
[17] | Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrix Theory Appl. 1, 1130001 (2012). arXiv:1106.1596 ·Zbl 1247.82040 ·doi:10.1142/S2010326311300014 |
[18] | Corwin, I., Hammond, A.: The H-Brownian Gibbs property of the KPZ line ensemble (in preparation) ·Zbl 1357.82040 |
[19] | Corwin, I., Ferrari, P.L., Péché, S.: Limit processes for TASEP with shocks and rarefaction fans. J. Stat. Phys. 140, 232-267 (2010) ·Zbl 1197.82078 ·doi:10.1007/s10955-010-9995-7 |
[20] | Corwin, I., Quastel, J., Remenik, D.: Continuum statistics of the Airy2 process. arXiv:1106.2717 ·Zbl 1257.82112 |
[21] | de Gennes, P.G.: Soluble model for fibrous structures with steric constraints. J. Chem. Phys. 48, 2257-2259 (1968) ·doi:10.1063/1.1669420 |
[22] | de Haroa, S., Tierz, M.: Brownian motion, Chern-Simons theory, and 2D Yang-Mills. Phys. Lett. B 601, 201-208 (2004) ·Zbl 1247.58020 ·doi:10.1016/j.physletb.2004.09.033 |
[23] | Durrett, R.: Probability: Theory and Examples. Duxbury Press, Belmont (2010) ·Zbl 1202.60001 ·doi:10.1017/CBO9780511779398 |
[24] | Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191-1198 (1962) ·Zbl 0111.32703 ·doi:10.1063/1.1703862 |
[25] | Feierl, T., The height and range of watermelons without wall, No. 5874, 242-253 (2009), Berlin ·Zbl 1267.05238 ·doi:10.1007/978-3-642-10217-2_25 |
[26] | Ferrari, P.L.: From interacting particle systems to random matrices. J. Stat. Mech. P10016 (2010) ·Zbl 1456.82657 |
[27] | Ferrari, P.L., Spohn, H.: Random growth models. arXiv:1003.0881 ·Zbl 1234.60010 |
[28] | Fisher, M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34, 667-729 (1984) ·Zbl 0589.60098 ·doi:10.1007/BF01009436 |
[29] | Fisher, D.S., Huse, D.A.: Directed paths in random potential. Phys. Rev. B 43, 10728-10742 (1991) ·doi:10.1103/PhysRevB.43.10728 |
[30] | Forrester, P.J., Majumdar, S.N., Schehr, G.: Non-intersecting Brownian walkers and Yang-Mills theory on the sphere. Nucl. Phys. B 844, 500-526 (2011) ·Zbl 1207.82022 ·doi:10.1016/j.nuclphysb.2010.11.013 |
[31] | Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732-749 (1977) ·doi:10.1103/PhysRevA.16.732 |
[32] | Garban, C., Pete, G., Schramm, O.: Pivotal, cluster and interface measures for critical planar percolation (2010). arXiv:1008.1378 ·Zbl 1276.60111 |
[33] | Grabiner, D.: Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. Henri Poincaré B, Probab. Stat. 35, 177-204 (1999) ·Zbl 0937.60075 ·doi:10.1016/S0246-0203(99)80010-7 |
[34] | Guttmann, A.J., Owczarek, A.L., Viennot, X.G.: Vicious walkers and Young tableaux I: without walls. J. Phys. A 31, 8123 (1998) ·Zbl 0930.05098 ·doi:10.1088/0305-4470/31/40/007 |
[35] | Hägg, J.: Local Gaussian fluctuations in the Airy and discrete PNG processes. Ann. Probab. 36, 1059-1092 (2008) ·Zbl 1142.60025 ·doi:10.1214/07-AOP353 |
[36] | Halpin-Healy, T., Zhang, Y.C.: Kinetic roughening, stochastic growth, directed polymers and all that. Phys. Rep. 254, 215-415 (1995) ·doi:10.1016/0370-1573(94)00087-J |
[37] | Hollander, F.: Random Polymers. École d’Été de Probabilités de Saint-Flour XXXVII. Lecture Notes in Mathematics, vol. 1974. Springer, Berlin (2007) |
[38] | Huse, D.A., Fisher, M.E.: Commensurate melting, domain walls, and dislocations. Phys. Rev. B 29, 239-270 (1984) ·doi:10.1103/PhysRevB.29.239 |
[39] | Huse, D., Henley, C.: Pinning and roughening of domain walls in Ising systems due to random impurities. Phys. Rev. Lett. 54, 2708-2711 (1985) ·doi:10.1103/PhysRevLett.54.2708 |
[40] | Imamura, T., Sasamoto, T.: Fluctuations of the one-dimensional polynuclear growth model with external sources. Nucl. Phys. B 699, 503-544 (2004) ·Zbl 1123.82352 ·doi:10.1016/j.nuclphysb.2004.07.030 |
[41] | Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437-476 (2000) ·Zbl 0969.15008 ·doi:10.1007/s002200050027 |
[42] | Johansson, K.: Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123, 225-280 (2002) ·Zbl 1008.60019 ·doi:10.1007/s004400100187 |
[43] | Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277-329 (2003) ·Zbl 1031.60084 |
[44] | Johansson, K.: Random Matrices and Determinantal Processes. Ecole de Physique, Les Houches (2005) |
[45] | Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, New York (1988) ·Zbl 0638.60065 ·doi:10.1007/978-1-4684-0302-2 |
[46] | Kardar, K., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889-892 (1986) ·Zbl 1101.82329 ·doi:10.1103/PhysRevLett.56.889 |
[47] | Karlin, S., McGregor, J.: Coincidence probability. Pac. J. Math. 9, 1141-1164 (1959) ·Zbl 0092.34503 ·doi:10.2140/pjm.1959.9.1141 |
[48] | Katori, M., Tanemura, H.: Noncolliding squared Bessel processes. J. Stat. Phys. 142, 592-615 (2011) ·Zbl 1211.82036 ·doi:10.1007/s10955-011-0117-y |
[49] | Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163, 1019-1056 (2006) ·Zbl 1154.82007 ·doi:10.4007/annals.2006.163.1019 |
[50] | Liechty, K.: Nonintersecting Brownian excursions on the half-line and discrete Gaussian orthogonal polynomials. J. Stat. Phys. 147, 582 (2012) ·Zbl 1244.82065 ·doi:10.1007/s10955-012-0485-y |
[51] | McKean, H.P.: Stochastic Integrals. Academic Press, New York (1969) ·Zbl 0191.46603 |
[52] | Minlos, R.A., Shlosman, S., Suhov, Yu.M.: In: On Dobrushin’s Way: From Probability Theory to Statistical Physics. AMS Translations, vol. 198 (2000) ·Zbl 0937.00068 |
[53] | Moreno Flores, G., Quastel, J., Remenik, D.: Endpoint distribution of directed polymers in 1+1 dimensions. arXiv:1106.2716 ·Zbl 1257.82117 |
[54] | Nadal, C., Majumdar, S.N.: Nonintersecting Brownian interfaces and Wishart random matrices. Phys. Rev. E 79, 061117 (2009) ·doi:10.1103/PhysRevE.79.061117 |
[55] | Nagao, T., Forrester, P.J.: Vicious random walkers and a discretization of Gaussian random matrix ensembles. Nucl. Phys. B 620, 551-565 (2002) ·Zbl 0983.60038 ·doi:10.1016/S0550-3213(01)00561-2 |
[56] | O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40, 437-458 (2012). arXiv:0910.0069 ·Zbl 1245.82091 ·doi:10.1214/10-AOP632 |
[57] | O’Connell, N., Warren, J.: A multi-layer extension of the stochastic heat equation. arXiv:1104.3509 ·Zbl 1332.60095 |
[58] | Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16, 581-603 (2003) ·Zbl 1009.05134 ·doi:10.1090/S0894-0347-03-00425-9 |
[59] | Pitman, J.; Yor, M.; Ikeda, N. (ed.); Watanabe, S. (ed.); Fukushima, M. (ed.); Kunita, H. (ed.), Decomposition at the maximum for exclusions and bridges of one-dimensional diffusions, 293-310 (1996), Berlin ·Zbl 0877.60053 ·doi:10.1007/978-4-431-68532-6_19 |
[60] | Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071-1106 (2002) ·Zbl 1025.82010 ·doi:10.1023/A:1019791415147 |
[61] | Quastel, J., Moreno Flores, G.: Intermediate disorder for the O’Connell-Yor model (in preparation) |
[62] | Rambeau, J., Schehr, G.: Extremal statistics of curved growing interfaces in 1+1 dimensions. Europhys. Lett. 91, 60006 (2010) ·doi:10.1209/0295-5075/91/60006 |
[63] | Rambeau, J., Schehr, G.: Distribution of the time at which N vicious walkers reach their maximal height. Phys. Rev. E 83, 061146 (2011) ·doi:10.1103/PhysRevE.83.061146 |
[64] | Sasamoto, T., Spohn, H.: One-dimensional KPZ equation: an exact solution and its universality. Phys. Rev. Lett. 104, 23 (2010) ·doi:10.1103/PhysRevLett.104.230602 |
[65] | Schehr, G.: Extremes of N vicious walkers for large N: application to the directed polymer and KPZ interfaces. J. Stat. Phys. 149, 385-410 (2012) ·Zbl 1259.82146 ·doi:10.1007/s10955-012-0593-8 |
[66] | Schramm, O., Sheffield, S.: Contour lines of the two-dimensional discrete Gaussian free field. Acta Math. 202(1), 21-137 (2009) ·Zbl 1210.60051 ·doi:10.1007/s11511-009-0034-y |
[67] | Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40, 19-73 (2012). arXiv:0911.2446 ·Zbl 1254.60098 ·doi:10.1214/10-AOP617 |
[68] | Sheffield, S.: Random Surfaces. Asterisque, vol. 304 (2005) ·Zbl 1104.60002 |
[69] | Shinault, G., Tracy, C.: Asymptotics for the covariance of the Airy2 process. J. Stat. Phys. 143, 60-71 (2011) ·Zbl 1221.82077 ·doi:10.1007/s10955-011-0155-5 |
[70] | Simon, B.: Trace Ideals and Their Applications. AMS, Providence (2005) ·Zbl 1074.47001 |
[71] | Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. (2000) ·Zbl 0991.60038 |
[72] | Spohn, H., KPZ equation in one dimension and line ensembles, 847-857 (2005), Berlin |
[73] | Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151-174 (1994) ·Zbl 0789.35152 ·doi:10.1007/BF02100489 |
[74] | Tracy, C., Widom, H.: The Pearcey process. Commun. Math. Phys. 263, 381-400 (2006) ·Zbl 1129.82031 ·doi:10.1007/s00220-005-1506-3 |
[75] | Tracy, C., Widom, H.: Nonintersecting Brownian excursions. Ann. Appl. Probab. 17, 953-979 (2007) ·Zbl 1124.60081 ·doi:10.1214/105051607000000041 |
[76] | Widom, H.: On asymptotics of the Airy process. J. Stat. Phys. 115, 1129-1134 (2004) ·Zbl 1073.82033 ·doi:10.1023/B:JOSS.0000022384.58696.61 |
[77] | Williams, D.: Path decomposition and continuity of local time for one dimensional diffusions I. Proc. Lond. Math. Soc. 28, 738-768 (1974) ·Zbl 0326.60093 ·doi:10.1112/plms/s3-28.4.738 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.