[1] | Agmon, S., Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 2, 2, 151-218 (1975) ·Zbl 0315.47007 |
[2] | Ben-Artzi, M.; Koch, H.; Saut, J., Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci., Sér. 1 Math., 330, 1, 87-92 (2000) ·Zbl 0942.35160 |
[3] | Deng, Q.; Ding, Y.; Yao, X., Maximal and minimal forms for generalized Schrödinger operators, Indiana Univ. Math. J., 63, 3, 727-738 (2014) ·Zbl 1309.47050 |
[4] | Dinh, V. D., On well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation, Bull. Belg. Math. Soc. Simon Stevin, 25, 3, 415-437 (2018) ·Zbl 1404.35411 |
[5] | Erdoğan, M. B.; Goldberg, M. J.; Green, W. R., Dispersive estimates for four dimensional Schrödinger and wave equations with obstructions at zero energy, Commun. Partial Differ. Equ., 39, 10, 1936-1964 (2014) ·Zbl 1325.35017 |
[6] | Erdoğan, M. B.; Green, W. R., Dispersive estimates for Schrödinger operators in dimension two with obstructions at zero energy, Trans. Am. Math. Soc., 365, 6403-6440 (2013) ·Zbl 1282.35143 |
[7] | Erdoğan, M. B.; Schlag, W., Dispersive estimates for Schrodinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I, Dyn. Partial Differ. Equ., 1, 359-379 (2004) ·Zbl 1080.35102 |
[8] | Feng, H.; Soffer, A.; Yao, X., Decay estimates and Strichartz estimates of fourth order Schrödinger operator, J. Funct. Anal., 274, 2, 605-658 (2018) ·Zbl 1379.58013 |
[9] | Feng, H.; Wu, Z.; Yao, X., Time asymptotic expansions of solution for fourth-order Schrödinger equation with zero resonance or eigenvalue, preprint |
[10] | Feng, H.; Soffer, A.; Wu, Z.; Yao, X., Decay estimates for higher order elliptic operators (2019), preprint |
[11] | Goldberg, M., A dispersive bound for three-dimensional Schrödinger operators with zero energy eigenvalues, Commun. Partial Differ. Equ., 35, 1610-1634 (2010) ·Zbl 1223.35265 |
[12] | Goldberg, M.; Green, W., Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues I: the odd dimensional case, J. Funct. Anal., 269, 3, 633-682 (2015) ·Zbl 1317.35216 |
[13] | Goldberg, M.; Green, W., Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues II: the even dimensional case, J. Spectr. Theory, 7, 33-86 (2017) ·Zbl 1372.35261 |
[14] | Goldberg, M.; Schlag, W., Dispersive estimates for Schrödinger operators in dimensions one and three, Commun. Math. Phys., 251, 1, 157-178 (2004) ·Zbl 1086.81077 |
[15] | Green, W.; Toprak, E., On the fourth order Schrödinger equation in four dimensions: dispersive estimates and zero energy resonances, J. Differ. Equ., 267, 3, 1899-1954 (2019) ·Zbl 1429.35059 |
[16] | Hao, C.; Hsiao, L.; Wang, B., Well-posedness for the fourth-order Schrödinger equations, J. Math. Anal. Appl., 320, 246-265 (2006) ·Zbl 1091.35090 |
[17] | Hao, C.; Hsiao, L.; Wang, B., Wellposedness of Cauchy problem for the fourth order nonlinear Schrödinger equations in multi-dimensional spaces, J. Math. Anal. Appl., 328, 58-83 (2007) ·Zbl 1115.35122 |
[18] | Jensen, A.; Kato, T., Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46, 3, 583-611 (1979) ·Zbl 0448.35080 |
[19] | Jensen, A.; Nenciu, G., A unified approach to resolvent expansions at thresholds, Rev. Math. Phys., 13, 6, 717-754 (2001) ·Zbl 1029.81067 |
[20] | Journé, J.-L.; Soffer, A.; Sogge, C. D., Decay estimates for Schrödinger operators, Commun. Pure Appl. Math., 44, 5, 573-604 (1991) ·Zbl 0743.35008 |
[21] | Karpman, V. I., Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger equation, Phys. Rev. E, 53, 2, 1336-1339 (1996) |
[22] | Karpman, V. I.; Shagalov, A. G., Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion, Phys. D, 144, 194-210 (2000) ·Zbl 0962.35165 |
[23] | Levandosky, S. P., Stability and instability of fourth-order solitary waves, J. Dyn. Differ. Equ., 10, 151-188 (1998) ·Zbl 0893.35079 |
[24] | Levandosky, S. P., Decay estimates for fourth order wave equations, J. Differ. Equ., 143, 360-413 (1998) ·Zbl 0901.35058 |
[25] | Levandosky, S. P.; Strauss, W. A., Time decay for the nonlinear beam equation, Methods Appl. Anal., 7, 479-488 (2000) ·Zbl 1029.35182 |
[26] | Miao, C.; Xu, G.; Zhao, L., Global wellposedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Differ. Equ., 246, 3715-3749 (2009) ·Zbl 1173.35117 |
[27] | Miao, C.; Xu, G.; Zhao, L., Global wellposedness and scattering for the defocusing energy-critical nonlinear Schrödinger equations of fourth order in dimensions \(d \geq 9\), J. Differ. Equ., 251, 3381-3402 (2011) ·Zbl 1241.35190 |
[28] | Murata, M., Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49, 1, 10-56 (1982) ·Zbl 0499.35019 |
[29] | Murata, M., High energy resolvent estimates I, first order operators, J. Math. Soc. Jpn., 35, 711-733 (1983) ·Zbl 0513.35010 |
[30] | Murata, M., High energy resolvent estimates II, higher order elliptic operators, J. Math. Soc. Jpn., 36, 1-10 (1984) ·Zbl 0519.35005 |
[31] | Pausader, B., Scattering and the Levandosky-Strauss conjecture for fourth-order nonlinear wave equations, J. Differ. Equ., 241, 2, 237-278 (2007) ·Zbl 1145.35090 |
[32] | Pausader, B., Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4, 3, 197-225 (2007) ·Zbl 1155.35096 |
[33] | Schlag, W., Dispersive estimates for Schrödinger operators in dimension two, Commun. Math. Phys., 257, 1, 87-117 (2005) ·Zbl 1134.35321 |
[34] | Yajima, K., The \(W^{k , p}\)-continuity of wave operators for Schrödinger operators, J. Math. Soc. Jpn., 47, 3 (1995) ·Zbl 0837.35039 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.