Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

Small representations of integers by integral quadratic forms.(English)Zbl 1454.11066

The authors give a bound on the height of points outside of some algebraic sets in a quadratic space at which an isotropic quadratic form over a number field assumes a certain value \(t\). These bounds are explicit in terms of the heights, the space, the algebraic set, and the value \(t\).

MSC:

11E12 Quadratic forms over global rings and fields
11G50 Heights
11E39 Bilinear and Hermitian forms

Cite

References:

[1]Bombieri, E.; Vaaler, J. D., On Siegel’s lemma, Invent. Math., 73, 1, 11-32 (1983) ·Zbl 0533.10030
[2]Cassels, J. W.S., Bounds for the least solutions of homogeneous quadratic equations, Proc. Camb. Philos. Soc., 51, 262-264 (1955) ·Zbl 0064.28302
[3]Chan, W. K.; Fukshansky, L.; Henshaw, G., Small zeros of quadratic forms missing a union of varieties, Trans. Amer. Math. Soc., 366, 10, 5587-5612 (2014) ·Zbl 1307.11081
[4]Dietmann, R., Small solutions of quadratic Diophantine equations, Proc. Lond. Math. Soc., 86, 3, 545-582 (2003) ·Zbl 1036.11009
[5]Dietmann, R., Small zeros of quadratic forms avoiding a finite number of prescribed hyperplanes, Canad. Math. Bull., 52, 1, 63-65 (2009) ·Zbl 1194.11035
[8]Gaudron, E.; Rémond, G., Espaces adéliques quadratiques, Math. Proc. Cambridge Philos. Soc., 162, 2, 211-247 (2017) ·Zbl 1423.11197
[9]Martinet, J., Perfect Lattices in Euclidean Spaces (2003), Springer-Verlag ·Zbl 1017.11031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp