Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A fully implicit mimetic finite difference scheme for general purpose subsurface reservoir simulation with full tensor permeability.(English)Zbl 1453.76120

Summary: In the previous article [A. S. Abushaikha et al., J. Comput. Phys. 346, 514–538 (2017;Zbl 1378.76042)], we presented a fully-implicit mixed hybrid finite element (MHFE) method for general-purpose compositional reservoir simulation. The present work extends the implementation for mimetic finite difference (MFD) discretization method. The new approach admits fully implicit solution on general polyhedral grids. The scheme couples the momentum and mass balance equations to assure conservation and applies a cubic equation-of-state for the fluid system. The flux conservativity is strongly imposed for the fully implicit approach and the Newton-Raphson method is used to linearize the system. We test the method through extensive numerical examples to demonstrate the convergence and accuracy on various shapes of polyhedral. We also compare the method to other discretization schemes for unstructured meshes and tensor permeability. Finally, we apply the method through applied computational cases to illustrate its robustness for full tensor anisotropic, highly heterogeneous and faulted reservoirs using unstructured grids.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76T30 Three or more component flows
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

Citations:

Zbl 1378.76042

Software:

MRST

Cite

References:

[1]Abushaikha, A. S.; Voskov, D. V.; Tchelepi, H. A., Fully implicit mixed-hybrid finite-element discretization for general purpose subsurface reservoir simulation, J. Comput. Phys., 346, 514-538 (2017), URL ·Zbl 1378.76042
[2]Aziz, K.; Settari, A., Petroleum Reservoir Simulation (1979), Chapman & Hall
[3]Gunasekera, D.; Cox, J.; Lindsey, P., The generation and application of k-orthogonal grid systems, (SPE Reservoir Simulation Symposium (1997), Society of Petroleum Engineers)
[4]Settari, A.; Aziz, K., Use of irregular grid in reservoir simulation, Soc. Pet. Eng. J., 12, 02, 103-114 (1972)
[5]Aavatsmark, I., An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci., 6, 3, 405-432 (2002) ·Zbl 1094.76550
[6]Nordbotten, J. M.; Eigestad, G. T., Discretization on quadrilateral grids with improved monotonicity properties, J. Comput. Phys., 203, 2, 744-760 (2005) ·Zbl 1143.76540
[7]Wheeler, M. F.; Yotov, I., A multipoint flux mixed finite element method, SIAM J. Numer. Anal., 44, 5, 2082-2106 (2006) ·Zbl 1121.76040
[8]Cao, Y.; Helmig, R.; Wohlmuth, B., Geometrical interpretation of the multi-point flux approximation l-method, Int. J. Numer. Methods Fluids, 60, 11, 1173-1199 (2009) ·Zbl 1166.76042
[9]Edwards, M. G., Higher-resolution hyperbolic-coupled-elliptic flux-continuous cvd schemes on structured and unstructured grids in 2-d, Int. J. Numer. Methods Fluids, 51, 1059-1077 (2006) ·Zbl 1158.76363
[10]Eigestad, G. T.; Klausen, R. A., On the convergence of the multi-point flux approximation o-method: numerical experiments for discontinuous permeability, Numer. Methods Partial Differ. Equ., 21, 6, 1079-1098 (2005) ·Zbl 1089.76037
[11]Aavatsmark, I.; Eigestad, G.; Klausen, R.; Wheeler, M.; Yotov, I., Convergence of a symmetric MPFA method on quadrilateral grids, Comput. Geosci., 11, 4, 333-345 (2007) ·Zbl 1128.65093
[12]Chen, Q.-Y.; Wan, J.; Yang, Y.; Mifflin, R. T., Enriched multi-point flux approximation for general grids, J. Comput. Phys., 227, 3, 1701-1721 (2008), URL ·Zbl 1221.76123
[13]Pal, M.; Edwards, M. G., q-families of CVD(MPFA) schemes on general elements: numerical convergence and the maximum principle, Arch. Comput. Methods Eng., 17, 2, 137-189 (2010), URL ·Zbl 1269.76075
[14]Terekhov, K. M.; Mallison, B. T.; Tchelepi, H. A., Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem, J. Comput. Phys., 330, 245-267 (2017), URL ·Zbl 1380.65335
[15]Le Potier, C., Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés, C. R. Math., 341, 12, 787-792 (2005) ·Zbl 1081.65086
[16]Nikitin, K.; Terekhov, K.; Vassilevski, Y., A monotone nonlinear finite volume method for diffusion equations and multiphase flows, Comput. Geosci., 18, 3, 311-324 (2014) ·Zbl 1378.76076
[17]Schneider, M.; Flemisch, B.; Helmig, R.; Terekhov, K.; Tchelepi, H., Monotone nonlinear finite-volume method for challenging grids, Comput. Geosci., 22, 2, 565-586 (2018) ·Zbl 1405.65145
[18]Le Potier, C., A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators, Int. J. Finite Vol., 1-20 (2009) ·Zbl 1490.65242
[19]Jackson, M.; Percival, J.; Mostaghimi, P.; Tollit, B.; Pavlidis, D.; Pain, C.; Gomes, J.; Elsheikh, A. H.; Salinas, P.; Muggeridge, A., Reservoir modeling for flow simulation by use of surfaces, adaptive unstructured meshes, and an overlapping-control-volume finite-element method, SPE Reserv. Eval. Eng., 18, 02, 115-132 (2015)
[20]Abushaikha, A. S.; Blunt, M. J.; Gosselin, O. R.; Pain, C. C.; Jackson, M. D., Interface control volume finite element method for modelling multi-phase fluid flow in highly heterogeneous and fractured reservoirs, J. Comput. Phys., 298, 41-61 (2015) ·Zbl 1349.76163
[21]Nick, H.; Matthai, S., A hybrid finite-element finite-volume method with embedded discontinuities for solute transport in heterogenous media, Vadose Zone J., 10, 299-312 (2011)
[22]Abushaikha, A., Numerical methods for modelling fluid flow in highly heterogeneous and fractured reservoirs (2013), Imperial College London: Imperial College London London: United Kingdom, Ph.D. thesis
[23]Salinas, P.; Pavlidis, D.; Xie, Z.; Osman, H.; Pain, C. C.; Jackson, M. D., A discontinuous control volume finite element method for multi-phase flow in heterogeneous porous media, J. Comput. Phys., 352, 602-614 (2018)
[24]Chavent, G.; Roberts, J., A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in water flow problems, Adv. Water Resour., 14, 329-348 (1991)
[25]Lipnikov, K.; Manzini, G.; Shashkov, M., Mimetic finite difference method, J. Comput. Phys., 257, 1163-1227 (2014) ·Zbl 1352.65420
[26]Shashkov, M.; Steinberg, S., Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys., 129, 2, 383-405 (1996) ·Zbl 0874.65062
[27]Hyman, J. M.; Shashkov, M., Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, Appl. Numer. Math., 25, 4, 413-442 (1997) ·Zbl 1005.65024
[28]Droniou, J.; Eymard, R.; Gallouët, T.; Herbin, R., A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci., 20, 02, 265-295 (2010) ·Zbl 1191.65142
[29]A.K. Pergament, Y.A. Poveshenko, Support operator method on irregular grids in computer technology for prognosis of oil and gas recovery. Preprints of Keldysh Institute of Applied Mathematics RAS (1997) 23-1 (in Russian).
[30]Alpak, F. O., A mimetic finite volume discretization method for reservoir simulation, SPE J., 15, 02, 436-453 (2010)
[31]Lie, K.-A.; Krogstad, S.; Ligaarden, I. S.; Natvig, J. R.; Nilsen, H. M.; Skaflestad, B., Open-source Matlab implementation of consistent discretisations on complex grids, Comput. Geosci., 16, 2, 297-322 (2012) ·Zbl 1348.86002
[32]Nilsen, H. M.; Natvig, J. R.; Lie, K.-A., Accurate modeling of faults by multipoint, mimetic, and mixed methods, SPE J., 17, 02, 568-579 (2012)
[33]Zhang, N.; Abushaikha, A. S., An efficient mimetic finite difference method for multiphase flow in fractured reservoirs, (SPE Europec Featured at 81st EAGE Conference and Exhibition (2019), Society of Petroleum Engineers)
[34]Zhang, N.; Abushaikha, A. S., Fully implicit reservoir simulation using mimetic finite difference method in fractured carbonate reservoirs, (SPE Reservoir Characterisation and Simulation Conference and Exhibition (2019), Society of Petroleum Engineers)
[35]Alpak, F. O.; Pal, M.; Lie, K.-A., A multiscale adaptive local-global method for modeling flow in stratigraphically complex reservoirs, SPE J., 17, 04, 1-056 (2012)
[36]Zhou, Y.; Tchelepi, H.; Mallison, B., Automatic differentiation framework for compositional simulation on unstructured grids with multi-point discretization schemes, (Proceedings of SPE Reservoir Simulation Symposium. Proceedings of SPE Reservoir Simulation Symposium, 21-23 February, The Woodlands, Texas, USA (2011))
[37]Voskov, D.; Tchelepi, H., Comparison of nonlinear formulations for two-phase multi-component EoS based simulation, J. Pet. Sci. Eng., 82-83, 101-111 (2012)
[38]Garipov, T.; Karimi-Fard, M.; Tchelepi, H., Discrete fracture model for coupled flow and geomechanics, Comput. Geosci., 20, 1, 149-160 (2016) ·Zbl 1392.76079
[39]Brooks, R.; Corey, A., Hydraulic Properties of Porous Media, Hydrology Papers, vol. 3 (1964), Colorado State University: Colorado State University Fort, Collins
[40]Michelsen, M. L., The isothermal flash problem. Part I. Stability, Fluid Phase Equilib., 9, 1, 1-19 (1982)
[41]Iranshahr, A.; Voskov, D.; Tchelepi, H., A negative-flash tie-simplex approach for multiphase reservoir simulation, Soc. Pet. Eng. J., 18, 6, 1140-1149 (2013), URL
[42]Michelsen, M. L., The isothermal flash problem. Part II. Phase-split calculation, Fluid Phase Equilib., 9, 1, 21-40 (1982)
[43]Voskov, D. V.; Tchelepi, H. A., Compositional space parameterization: theory and application for immiscible displacements, Soc. Pet. Eng. J., 14, 431-440 (2009)
[44]Iranshahr, A.; Voskov, D.; Tchelepi, H., Tie-simplex based compositional space parameterization: continuity and generalization to multiphase systems, AIChE J., 59, 5, 1684-1701 (2013)
[45]Coats, K. H., An equation of state compositional model, SPE J., 20, 5 (1980), URL ·Zbl 0455.76090
[46]Voskov, D., An extended natural variable formulation for compositional simulation based on tie-line parameterization, Transp. Porous Media, 92, 3, 541-557 (2012)
[47]Zaydullin, R.; Voskov, D. V.; James, S. C.; Lucia, A., Fully compositional and thermal reservoir simulation, Comput. Chem. Eng., 63, 51-65 (2014)
[48]da Veiga, L. B.; Lipnikov, K.; Manzini, G., The Mimetic Finite Difference Method for Elliptic Problems, vol. 11 (2014), Springer ·Zbl 1286.65141
[49]Younis, R., Modern advances in software and solution algorithms for reservoir simulation (2011), Stanford University, PhD Thesis
[50]Zhou, Y., Parallel General-Purpose Reservoir Simulation with Coupled Reservoir Models and Multi-Segment Wells (2012), Stanford University, PhD Thesis
[51]Kuzmin, A.; Luisier, M.; Schenk, O., Fast methods for computing selected elements of the green’s function in massively parallel nanoelectronic device simulations, (Euro-Par 2013 Parallel Processing (2013), Springer), 533-544
[52]Brezzi, F.; Lipnikov, K.; Simoncini, V., A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 15, 10, 1533-1551 (2005) ·Zbl 1083.65099
[53]Christie, M.; Blunt, M., Tenth SPE comparative solution project: a comparison of upscaling techniques, (SPE Reservoir Simulation Symposium (2001), Society of Petroleum Engineers)
[54]Cao, H., Development of Techniques for General Purpose Simulators (2002), Stanford University, PhD Thesis
[55]Jiang, Y., Techniques for modeling complex reservoirs and advanced wells (2007), Stanford University, Ph.D. thesis
[56]Worden, R.; Smalley, P., H2s-producing reactions in deep carbonate gas reservoirs: Khuff formation, abu dhabi, Chem. Geol., 133, 1, 157-171 (1996), URL
[57]Ferronato, M.; Franceschini, A.; Janna, C.; Castelletto, N.; Tchelepi, H. A., A general preconditioning framework for coupled multiphysics problems with application to contact- and poro-mechanics, J. Comput. Phys., 398, Article 108887 pp. (2019), URL ·Zbl 1453.65065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp