Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

A general preconditioning framework for coupled multiphysics problems with application to contact- and poro-mechanics.(English)Zbl 1453.65065

Summary: This work discusses a general approach for preconditioning the block Jacobian matrix arising from the discretization and linearization of coupled multiphysics problem. The objective is to provide a fully algebraic framework that can be employed as a starting point for the development of specialized algorithms exploiting unique features of the specific problem at hand. The basic idea relies on approximately computing an operator able to decouple the different processes, which can then be solved independently one from the other. In this work, the decoupling operator is computed by extending the theory of block sparse approximate inverses. The proposed approach is implemented for two multiphysics applications, namely the simulation of a coupled poromechanical system and the mechanics of fractured media. The numerical results obtained in experiments taken from real-world examples are used to analyze and discuss the properties of the preconditioner.

MSC:

65F08 Preconditioners for iterative methods
74S05 Finite element methods applied to problems in solid mechanics
65Z05 Applications to the sciences

Cite

References:

[1]Aziz, K.; Settari, A., Petroleum Reservoir Simulation (1979), Chapman & Hall
[2]Lewis, R.; Schrefler, B., The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (1998), John Wiley ·Zbl 0935.74004
[3]Class, H.; Helmig, R.; Bastian, P., Numerical simulation of non-isothermal multiphase multicomponent processes in porous media. 1. An efficient solution technique, Adv. Water Resour., 25, 533-550 (2003)
[4]Castelletto, N.; Ferronato, M.; Gambolati, G., Thermo-hydro-mechanical modeling of fluid geological storage by Godunov-mixed methods, Int. J. Numer. Methods Eng., 90, 988-1009 (2012) ·Zbl 1242.76157
[5]Choo, J.; Borja, R., Stabilized mixed finite elements for deformable porous media with double porosity, Comput. Methods Appl. Mech. Eng., 293, 131-154 (2015) ·Zbl 1423.74265
[6]Cao, T.; Sanavia, L.; Schrefler, B., A thermo-hydro-mechanical model for multiphase geomaterials in dynamics with application to strain localization simulation, Int. J. Numer. Methods Eng., 107, 312-337 (2016) ·Zbl 1352.74180
[7]Papatzacos, P., A model for multiphase, multicomponent, and thermal flow in neutrally wetting porous media, built on the diffuse-interface assumption, J. Pet. Sci. Eng., 143, 141-157 (2016)
[8]Abushaikha, A.; Voskov, D.; Tchelepi, H., Fully implicit mixed-hybrid finite-element discretization for general purpose subsurface reservoir simulation, J. Comput. Phys., 346, 514-538 (2017) ·Zbl 1378.76042
[9]Elman, H.; Silvester, D.; Wathen, A., Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90, 665-688 (2002) ·Zbl 1143.76531
[10]Elman, H.; Silvester, D.; Wathen, A., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Oxford Series in Numerical Mathematics and Scientific Computation (2005), Oxford University Press ·Zbl 1083.76001
[11]Bosch, J.; Stoll, M., Preconditioning for vector-valued Cahn-Hilliard equations, SIAM J. Sci. Comput., 37, S216-S243 (2015) ·Zbl 1325.65043
[12]Garcke, H.; Hinze, M.; Kahle, C., A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow, Appl. Numer. Math., 99, 151-171 (2016) ·Zbl 1329.76168
[13]Jha, B.; Juanes, R., Coupled multiphase flow and poromechanics: a computational model of pore pressure effects on fault slip and earthquake triggering, Water Resour. Res., 50, 3776-3808 (2014)
[14]Franceschini, A.; Ferronato, M.; Janna, C.; Teatini, P., A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics, J. Comput. Phys., 314, 503-521 (2016) ·Zbl 1349.74321
[15]Garipov, T.; Karimi-Fard, M.; Tchelepi, H., Discrete fracture model for coupled flow and geomechanics, Comput. Geosci., 314, 503-521 (2016) ·Zbl 1392.76079
[16]Settgast, R.; Fu, P.; Walsh, S.; White, J.; Annavarapu, C.; Ryerson, F., A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions, Int. J. Numer. Anal. Methods Geomech., 41, 627-653 (2017)
[17]Choo, J.; Sun, W., Coupled phase-field and plasticity modeling of geological materials: from brittle fracture to ductile flow, Comput. Methods Appl. Mech. Eng., 330, 1-32 (2018) ·Zbl 1439.74184
[18]Zavarise, G.; Lorenzis, L. D., An augmented Lagrangian algorithm for contact mechanics based on linear regression, Int. J. Numer. Methods Eng., 91, 825-842 (2012)
[19]Dimitri, R.; Lorenzis, L. D.; Scott, M.; Wriggers, P.; Taylor, R.; Zavarise, G., Isogeometric large deformation frictionless contact using t-splines, Comput. Methods Appl. Mech. Eng., 269, 394-414 (2014) ·Zbl 1296.74071
[20]Zanette, A.; Ferronato, M.; Janna, C., Enriching the finite element method with meshfree particles in structural mechanics, Int. J. Numer. Methods Eng., 110, 675-700 (2017) ·Zbl 1365.74156
[21]Kim, J.; Tchelepi, H.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Eng., 200, 1591-1606 (2011) ·Zbl 1228.74101
[22]Mikelic, A.; Wheeler, M., Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 455-461 (2013) ·Zbl 1392.35235
[23]White, J.; Castelletto, N.; Tchelepi, H., Block-partitioned solvers for coupled poromechanics: a unified framework, Comput. Methods Appl. Mech. Eng., 303, 55-74 (2016) ·Zbl 1425.74497
[24]Lee, S.; Wheeler, M.; Wick, T., Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches, J. Comput. Appl. Math., 314, 40-60 (2017) ·Zbl 1388.76140
[25]Chow, E.; Vassilevski, P., Multilevel block factorizations in generalized hierarchical bases, Numer. Linear Algebra Appl., 10, 105-127 (2003) ·Zbl 1071.65061
[26]Bai, Z.; Ng, M., On inexact preconditioners for nonsymmetric matrices, SIAM J. Sci. Comput., 26, 791-815 (2015)
[27]Janna, C.; Ferronato, M.; Gambolati, G., Multilevel incomplete factorizations for the iterative solution of non-linear FE problems, Int. J. Numer. Methods Eng., 80, 651-670 (2009) ·Zbl 1176.74184
[28]Cao, Z., A note on constraint preconditioning for nonsymmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 24, 121-125 (2002) ·Zbl 1018.65060
[29]Dollar, H.; Wathen, A., Approximate factorization constraint preconditioners for saddle-point matrices, SIAM J. Sci. Comput., 27, 1555-1572 (2006) ·Zbl 1105.65047
[30]Bergamaschi, L.; Ferronato, M.; Gambolati, G., Mixed constraint preconditioners for the iterative solution to FE coupled consolidation equations, J. Comput. Phys., 227, 9885-9897 (2008) ·Zbl 1154.65015
[31]Ferronato, M.; Janna, C.; Gambolati, G., Mixed constraint preconditioning in computational contact mechanics, Comput. Methods Appl. Mech. Eng., 197, 3922-3931 (2008) ·Zbl 1194.74522
[32]Bai, Z.; Golub, G.; Ng, M., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24, 603-626 (2003) ·Zbl 1036.65032
[33]Benzi, M.; Guo, X., A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations, Appl. Numer. Math., 61, 66-76 (2011) ·Zbl 1302.65074
[34]Benzi, M.; Deparis, S.; Grandperrin, G.; Quarteroni, A., Parameter estimates for the relaxed dimensional factorization preconditioner and application to hemodynamics, Comput. Methods Appl. Mech. Eng., 300, 129-145 (2016) ·Zbl 1423.76212
[35]Vassilevski, P., Multilevel Block Factorization Preconditioners (2008), Springer ·Zbl 1170.65001
[36]Ferronato, M.; Castelletto, N.; Gambolati, G., A fully coupled 3-d mixed finite element model of Biot consolidation, J. Comput. Phys., 229, 4813-4830 (2010) ·Zbl 1305.76055
[37]Castelletto, N.; White, J.; Ferronato, M., Scalable algorithms for three-field mixed finite element coupled poromechanics, J. Comput. Phys., 327, 894-918 (2016) ·Zbl 1373.76312
[38]Ferronato, M.; Janna, C.; Pini, G., A generalized Block FSAI preconditioner for nonsymmetric linear systems, J. Comput. Appl. Math., 256, 230-241 (2014) ·Zbl 1314.65044
[39]Janna, C.; Ferronato, M.; Gambolati, G., A Block FSAI-ILU parallel preconditioner for symmetric positive definite linear systems, SIAM J. Sci. Comput., 32, 2468-2484 (2010) ·Zbl 1220.65037
[40]Grote, M.; Huckle, T., Parallel preconditioning with sparse approximate inverses, SIAM J. Sci. Comput., 18, 838-853 (1997) ·Zbl 0872.65031
[41]Kolotilina, L.; Yeremin, A., Factorized sparse approximate inverse preconditionings I. Theory, SIAM J. Matrix Anal. Appl., 14, 45-58 (1993) ·Zbl 0767.65037
[42]Kolotilina, L.; Yeremin, A., Factorized sparse approximate inverse preconditioning. IV. Simple approaches to rising efficiency, Numer. Linear Algebra Appl., 6, 515-531 (1999) ·Zbl 0983.65062
[43]Chow, E., A priori sparsity patterns for parallel sparse approximate inverse preconditioners, SIAM J. Sci. Comput., 21, 1804-1822 (2000) ·Zbl 0957.65023
[44]Janna, C.; Ferronato, M., Adaptive pattern research for block FSAI preconditioning, SIAM J. Sci. Comput., 33, 3357-3380 (2011) ·Zbl 1273.65045
[45]Kaporin, I., New convergence results and preconditioning strategies for the conjugate gradient method, Numer. Linear Algebra Appl., 1, 179-210 (1994) ·Zbl 0837.65027
[46]Janna, C.; Ferronato, M.; Gambolati, G., The use of supernodes in factored sparse approximate inverse preconditioning, SIAM J. Sci. Comput., 37, C72-C94 (2015) ·Zbl 1327.65062
[47]Ferronato, M.; Pini, G., A supernodal block factorized sparse approximate inverse for non-symmetric linear systems, Numer. Algorithms, 78, 1, 333-354 (2018) ·Zbl 1391.65058
[48]Lipnikov, K., Numerical Methods for the Biot Model in Poroelasticity (2002), University of Houston, PhD thesis
[49]Rodrigo, C.; Hu, X.; Ohm, P.; Adler, J. H.; Gaspar, F. J.; Zikatanov, L. T., New stabilized discretizations for poroelasticity and the Stokes’ equations, Comput. Methods Appl. Mech. Eng., 341, 467-484 (2018) ·Zbl 1440.76027
[50]der Vorst, H. V., Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 631-644 (1992) ·Zbl 0761.65023
[51]Mandel, J., Consolidation des sols (Étude mathématique), Geotechnique, 3, 287-299 (1953)
[52]Abousleiman, Y.; Cheng, A.; Cui, L.; Detournay, E.; Roegiers, J., Mandel’s problem revisited, Geotechnique, 46, 187-195 (1996)
[53]Castelletto, N.; White, J.; Tchelepi, H., Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech., 39, 1593-1618 (2015)
[54]Janna, C.; Ferronato, M.; Sartoretto, F.; Gambolati, G., FSAIPACK: a software package for high-performance factored sparse approximate inverse preconditioning, ACM Trans. Math. Softw., 41, Article 10 pp. (2015) ·Zbl 1369.65052
[55]Berengo, V.; Leoni, M.; Simonini, P., Numerical modelling of the time-dependent behaviour of Venice lagoon silts, (Singh, D., Proceedings of 12th International Conference of the International Association for Computer Methods and Advances in Geomechanics. Proceedings of 12th International Conference of the International Association for Computer Methods and Advances in Geomechanics, IACMAG (2008)), 929-936
[56]Castelletto, N.; Gambolati, G.; Teatini, P., A coupled MFE poromechanical model of a large-scale load experiment at the coastland of Venice, Comput. Geosci., 19, 17-29 (2015)
[57]Christie, M. A.; Blunt, M. J., Tenth SPE comparative solution project: a comparison of upscaling techniques, SPE Reserv. Eval. Eng., 4, 4, 308-316 (2001)
[58]Peaceman, D. W., Interpretation of well-block pressures in numerical reservoir simulation, Soc. Pet. Eng., AIME J., 18, 3, 183-194 (1978)
[59]Franceschini, A.; Teatini, P.; Janna, C.; Ferronato, M.; Gambolati, G.; Ye, S.; Carreon-Freyre, D., Modeling ground rupture due to groundwater withdrawal: applications to test cases in China and Mexico, (Proceedings of the International Association of Hydrological Sciences, vol. 362 (2015)), 63-68
[60]Trejo-Moedano, A.; Martinez-Baini, A., Soils cracking in the Querétaro zone, (Proceedings of the Symposium of Agrietamientos de Suelos (1991), Sociedad Mexicana de Mecánica de Suelos: Sociedad Mexicana de Mecánica de Suelos México), 67-74, (in Spanish)
[61]Shi, X.; Xue, Y.; Ye, S.; Wu, J.; Zhang, Y.; Jun, Y., Characterization of land subsidence induced by groundwater withdrawals in Su-Xi-Chang area, China, Environ. Geol., 52, 27-40 (2007)
[62]Wang, G.; You, G.; Shi, B.; Yu, J.; Li, H.; Zong, K., Earth fissures triggered by groundwater withdrawal and coupled by geological structures in Jiangsu Province, China, Environ. Earth Sci., 57, 1047-1054 (2009)
[63]Loghin, D.; Wathen, A., Schur complement preconditioning for elliptic systems of partial differential equations, Numer. Linear Algebra Appl., 10, 423-443 (2003) ·Zbl 1071.65146
[64]Loghin, D.; Wathen, A., Analysis of preconditioners for saddle-point problems, SIAM J. Sci. Comput., 25, 2029-2049 (2004) ·Zbl 1067.65048
[65]Lee, J., Robust error analysis of coupled mixed methods for Biot’s consolidation model, J. Sci. Comput., 69, 610-632 (2016) ·Zbl 1368.65234
[66]Lee, J.; Mardal, K.; Winther, R., Parameter-robust discretization and preconditioning of Biot’s consolidation model, SIAM J. Sci. Comput., 39, A1-A24 (2017) ·Zbl 1381.76183
[67]Adler, J.; Gaspar, F.; Hu, X.; Rodrigo, C.; Zikatanov, L., Robust block preconditioners for Biot’s model, (Bjørstad, P.; etal., Domain Decomposition Methods in Science and Engineering XXIV. Domain Decomposition Methods in Science and Engineering XXIV, Lecture Notes in Computational Science and Engineering, vol. 125 (2018)) ·Zbl 1442.65342
[68]Hong, Q.; Kraus, J., Parameter-robust stability of classical three-field formulation of Biot’s consolidation model, Electron. Trans. Numer. Anal., 48, 202-226 (2018) ·Zbl 1398.65046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp