35J60 | Nonlinear elliptic equations |
46E35 | Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems |
35J20 | Variational methods for second-order elliptic equations |
[1] | Baroni, P.; Colombo, M.; Mingione, G., Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., 57, 2, 48 (2018) ·Zbl 1394.49034 ·doi:10.1007/s00526-018-1332-z |
[2] | Colombo, M.; Mingione, G., Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218, 1, 219-273 (2015) ·Zbl 1325.49042 ·doi:10.1007/s00205-015-0859-9 |
[3] | Cruz-Uribe, DV; Fiorenza, A., Variable Lebesgue Spaces. Applied and Numerical Harmonic Analysis (2013), Heidelberg: Birkhäuser/Springer, Heidelberg ·Zbl 1268.46002 |
[4] | Diening, L., Maximal function on generalized Lebesgue spaces \(L^{p(\cdot )}\), Math. Inequal. Appl., 7, 2, 245-253 (2004) ·Zbl 1071.42014 |
[5] | Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, volume 2017 of Lecture Notes in Mathematics, 1st edn. Springer (2011) ·Zbl 1222.46002 |
[6] | Diening, L., Hästo, P., Nekvinda, A.: Open problems in variable exponent Lebesgue and Sobolev spaces. In: FSDONA04 Proceedings, pp. 38-52. 01 (2004) |
[7] | Edmunds, DE; Rákosník, J., Density of smooth functions in \(W^{k, p(x)}(\Omega )\), Proc. R. Soc. Lond. Ser. A, 437, 1899, 229-236 (1992) ·Zbl 0779.46027 |
[8] | Esposito, L.; Leonetti, F.; Mingione, G., Sharp regularity for functionals with \((p, q)\) growth, J. Differ. Equ., 204, 1, 5-55 (2004) ·Zbl 1072.49024 |
[9] | Fonseca, I.; Malý, J.; Mingione, G., Scalar minimizers with fractal singular sets, Arch. Ration. Mech. Anal., 172, 2, 295-307 (2004) ·Zbl 1049.49015 ·doi:10.1007/s00205-003-0301-6 |
[10] | Harjulehto, P.; Hästö, P., Generalized Orlicz Spaces (2019), Cham: Springer, Cham ·Zbl 1436.46002 |
[11] | Hästö, P.A.: Counter-examples of regularity in variable exponent Sobolev spaces. In: The \(p\)-Harmonic Equation and Recent Advances in Analysis, volume 370 of Contemporary Mathematics, pp. 133-143. Amer. Math. Soc., Providence, RI (2005) ·Zbl 1084.46025 |
[12] | Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-standard Function Spaces. Vol. 1, volume 248 of Operator Theory: Advances and Applications. Birkhäuser/Springer, [Cham], Variable exponent Lebesgue and amalgam spaces (2016) ·Zbl 1385.47001 |
[13] | Kostopoulos, T.; Yannakakis, N., Density of smooth functions in variable exponent Sobolev spaces, Nonlinear Anal., 127, 196-205 (2015) ·Zbl 1343.46034 ·doi:10.1016/j.na.2015.07.007 |
[14] | Lavrentiev, M., Sur quelques problemes du calcul des variations, Ann. Math. Pura Appl., 4, 107-124 (1926) |
[15] | Manià, B., Sopra un esempio di Lavrentieff, Bull. Un. Mat. Ital., 13, 147-153 (1934) ·JFM 60.0457.02 |
[16] | Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105, 3, 267-284 (1989) ·Zbl 0667.49032 ·doi:10.1007/BF00251503 |
[17] | Surnachev, MD, Density of smooth functions in weighted Sobolev spaces with variable exponent, Dokl. Math., 89, 2, 146-150 (2014) ·Zbl 1315.46039 ·doi:10.1134/S1064562414020045 |
[18] | Zhikov, VV; Surnachev, MD, On density of smooth functions in weighted Sobolev spaces with variable exponents, St Petersb. Math. J., 27, 415-436 (2016) ·Zbl 1354.46039 ·doi:10.1090/spmj/1396 |
[19] | Zhikov, VV, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50, 4, 675-710 (1986) |
[20] | Zhikov, VV, On weighted Sobolev spaces, Mat. Sb., 189, 8, 27-58 (1998) ·Zbl 0919.46026 ·doi:10.4213/sm344 |
[21] | Zhikov, V. V.: On the density of smooth functions in Sobolev-Orlicz spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI). 310(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34]):67-81 (2004) ·Zbl 1086.46026 |
[22] | Zhikov, VV, On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3, 2, 249-269 (1995) ·Zbl 0910.49020 |