Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

New examples on Lavrentiev gap using fractals.(English)Zbl 1453.35082

The paper deals with the Lavrentiev gap, i.e., the phenomenon which occurs when the minimum of an integral functional \(\mathcal{G}\) taken over smooth functions differs from the one taken over the associated energy space. The Lavrentiev gap is clearly closely related to the (non-)density of smooth functions, i.e. to the fact that \(H^{1,p(\cdot)}(\Omega)\neq W^{1,p(\cdot)}(\Omega)\), where \(p(\cdot)\) is variable exponent. In [Izv. Akad. Nauk SSSR Ser. Mat., 50, No. 4, 675–710 (1986)],VV. Zhikov presented a two-dimensional checkboard example with a Lavrentiev gap. In such an example and in others, the dimension played a critical role, since the exponent presents a saddle point where it crossed the dimension \(d\). In the present paper, the authors provide new examples of variable exponents, such that the Lavrentiev gap occurs but which do not need to cross the dimensional threshold. They also show that \(H^{1,p(\cdot)}(\Omega)\neq W^{1,p(\cdot)}(\Omega)\) and the ambiguity of the notion of \(p(\cdot)\)-harmonicity.

MSC:

35J60 Nonlinear elliptic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35J20 Variational methods for second-order elliptic equations

Cite

References:

[1]Baroni, P.; Colombo, M.; Mingione, G., Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., 57, 2, 48 (2018) ·Zbl 1394.49034 ·doi:10.1007/s00526-018-1332-z
[2]Colombo, M.; Mingione, G., Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 218, 1, 219-273 (2015) ·Zbl 1325.49042 ·doi:10.1007/s00205-015-0859-9
[3]Cruz-Uribe, DV; Fiorenza, A., Variable Lebesgue Spaces. Applied and Numerical Harmonic Analysis (2013), Heidelberg: Birkhäuser/Springer, Heidelberg ·Zbl 1268.46002
[4]Diening, L., Maximal function on generalized Lebesgue spaces \(L^{p(\cdot )}\), Math. Inequal. Appl., 7, 2, 245-253 (2004) ·Zbl 1071.42014
[5]Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, volume 2017 of Lecture Notes in Mathematics, 1st edn. Springer (2011) ·Zbl 1222.46002
[6]Diening, L., Hästo, P., Nekvinda, A.: Open problems in variable exponent Lebesgue and Sobolev spaces. In: FSDONA04 Proceedings, pp. 38-52. 01 (2004)
[7]Edmunds, DE; Rákosník, J., Density of smooth functions in \(W^{k, p(x)}(\Omega )\), Proc. R. Soc. Lond. Ser. A, 437, 1899, 229-236 (1992) ·Zbl 0779.46027
[8]Esposito, L.; Leonetti, F.; Mingione, G., Sharp regularity for functionals with \((p, q)\) growth, J. Differ. Equ., 204, 1, 5-55 (2004) ·Zbl 1072.49024
[9]Fonseca, I.; Malý, J.; Mingione, G., Scalar minimizers with fractal singular sets, Arch. Ration. Mech. Anal., 172, 2, 295-307 (2004) ·Zbl 1049.49015 ·doi:10.1007/s00205-003-0301-6
[10]Harjulehto, P.; Hästö, P., Generalized Orlicz Spaces (2019), Cham: Springer, Cham ·Zbl 1436.46002
[11]Hästö, P.A.: Counter-examples of regularity in variable exponent Sobolev spaces. In: The \(p\)-Harmonic Equation and Recent Advances in Analysis, volume 370 of Contemporary Mathematics, pp. 133-143. Amer. Math. Soc., Providence, RI (2005) ·Zbl 1084.46025
[12]Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-standard Function Spaces. Vol. 1, volume 248 of Operator Theory: Advances and Applications. Birkhäuser/Springer, [Cham], Variable exponent Lebesgue and amalgam spaces (2016) ·Zbl 1385.47001
[13]Kostopoulos, T.; Yannakakis, N., Density of smooth functions in variable exponent Sobolev spaces, Nonlinear Anal., 127, 196-205 (2015) ·Zbl 1343.46034 ·doi:10.1016/j.na.2015.07.007
[14]Lavrentiev, M., Sur quelques problemes du calcul des variations, Ann. Math. Pura Appl., 4, 107-124 (1926)
[15]Manià, B., Sopra un esempio di Lavrentieff, Bull. Un. Mat. Ital., 13, 147-153 (1934) ·JFM 60.0457.02
[16]Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105, 3, 267-284 (1989) ·Zbl 0667.49032 ·doi:10.1007/BF00251503
[17]Surnachev, MD, Density of smooth functions in weighted Sobolev spaces with variable exponent, Dokl. Math., 89, 2, 146-150 (2014) ·Zbl 1315.46039 ·doi:10.1134/S1064562414020045
[18]Zhikov, VV; Surnachev, MD, On density of smooth functions in weighted Sobolev spaces with variable exponents, St Petersb. Math. J., 27, 415-436 (2016) ·Zbl 1354.46039 ·doi:10.1090/spmj/1396
[19]Zhikov, VV, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50, 4, 675-710 (1986)
[20]Zhikov, VV, On weighted Sobolev spaces, Mat. Sb., 189, 8, 27-58 (1998) ·Zbl 0919.46026 ·doi:10.4213/sm344
[21]Zhikov, V. V.: On the density of smooth functions in Sobolev-Orlicz spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI). 310(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34]):67-81 (2004) ·Zbl 1086.46026
[22]Zhikov, VV, On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3, 2, 249-269 (1995) ·Zbl 0910.49020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp