[1] | Li, J.; Liu, Y., New results on the study of Zq‐equivariant planar polynomial vector fields, Qual Theory Dyn Syst, 9, 167-219, 2010 ·Zbl 1213.34059 |
[2] | Li, C.; Liu, C.; Yang, J., A cubic system with thirteen limit cycles, J, Differ Equ, 246, 3609-3619, 2009 ·Zbl 1176.34037 |
[3] | Li, J., Hilbert’s 16th problem and bifurcations of planar polynomial vector fields, Int J Bifurc Chaos, 13, 47-106, 2003 ·Zbl 1063.34026 |
[4] | Romanovski, VG; Shafer, DS, The center and cyclicity problems: a computational algebra approach, 2009, Springer Science & Business Media: Birkhäuser Boston, Inc.: Boston, MA ·Zbl 1192.34003 |
[5] | Guo, L.; Yu, P.; Chen, Y., Twelve limit cycles in 3D quadratic vector fields with Z_3 symmetry, Int J Bifurc Chaos, 28, 2018 ·Zbl 1404.34033 |
[6] | Dulac, H., D’etermination et int’egration d’une certaine classe d equations diff’erentielles ayant pour point singulier un centre, Bull Sci Math, 32, 230-252, 1908 ·JFM 39.0374.01 |
[7] | Yu, P.; Tian, Y., Twelve limit cycles around a singular point in a planar cubic‐degree polynomial system, Commun Nonlinear Sci Numer Simulat, 19, 2690-2705, 2014 ·Zbl 1510.37083 |
[8] | Wang, Q.; Liu, Y.; Chen, H., Hopf bifurcation for a class of three‐dimensional nonlinear dynamic systems, Bull Sci Math, 134, 786-798, 2010 ·Zbl 1204.37051 |
[9] | Yu, P.; Han, M., Ten limit cycles around a center‐type singular point in a 3‐d quadratic system with quadratic perturbation, Appl Math Lett, 44, 17-20, 2015 ·Zbl 1336.34051 |
[10] | Gyllenberg, M.; Yan, P., Four limit cycles for a 3D competitive Lotka‐Volterra system with a heteroclinic cycle, Comput Math Appl, 58, 649-669, 2009 ·Zbl 1189.34080 |
[11] | Wang, Q.; Wu, H.; Li, B., Limit cycles and singular point quantities for a 3D Lotka‐Volterra system, Appl Math Comput, 217, 8856-8859, 2011 ·Zbl 1220.34051 |
[12] | Liu, L.; Aybar, OO; Romanovski, VG; Zhang, W., Identifying weak foci and centers in Maxwell‐Bloch system, J Math, 430, 549-571, 2015 ·Zbl 1322.34050 |
[13] | García, IA; Maza, S.; Shafer, DS, Cyclicity of polynomial nondegenerate centers on center manifolds, J Differ Equations, 265, 5767-5808, 2018 ·Zbl 1434.37030 |
[14] | García, IA; Maza, S.; Shafer, DS, Center cyclicity of Lorenz, Chen and Lü systems, Nonlinear Anal, 188, 362-376, 2019 ·Zbl 1428.37046 |
[15] | Matsumoto, T.; Chua, LO; Komuro, M., The double scroll, IEEE Trans Circuits Syst, 32, 797-818, 1985 ·Zbl 0578.94023 |
[16] | Chua, LO; Komuro, M.; Matsumoto, T., The double scroll family, IEEE Trans Circuits Syst, 33, 1072-1118, 2003 ·Zbl 0634.58015 |
[17] | Messias, M.; Braga, DC; Mello, LF, Degenerate Hopf bifurcations in Chua’s system, Int J Bifurc Chaos, 19, 497-515, 2009 ·Zbl 1170.34333 |
[18] | Llibre, J.; Makhlouf, A.; Badi, S., 3‐dimensional Hopf bifurcation via averaging theory of second order, Discrete Cont Dyn Syst, 25, 1287-1295, 2009 ·Zbl 1186.37059 |
[19] | Barreira, L.; Llibre, J.; Valls, C., Bifurcation of limit cycles from a 4‐dimensional center in ℝ^m in resonance 1: N, J Math Anal Appl, 389, 754-768, 2012 ·Zbl 1242.34066 |
[20] | Buica, A.; Garca, I.; Maza, S., Existence of inverse Jacobi multipliers around Hopf points in ℝ^3: emphasis on the center problem, J Differential Equations, 252, 6324-6336, 2012 ·Zbl 1252.37040 |
[21] | Buica, A.; Garca, I.; Maza, S., Multiple Hopf bifurcation in ℝ^3 and inverse Jacobi multipliers, J Differ Equations, 256, 310-325, 2014 ·Zbl 1346.37050 |
[22] | Tian, Y.; Yu, P., An explicit recursive formula for computing the normal form and center manifold of n‐dimensional differential systems associated with Hopf bifurcation, Int J Bifurcation Chaos, 23, 2013 ·Zbl 1272.34004 |
[23] | Edneral, VF; Mahdi, A.; Romanovskic, VG; Shafer, DS, The center problem on a center manifold in ℝ^3, Nonlinear Anal Real World Appl, 75, 2614-2622, 2012 ·Zbl 1259.34021 |
[24] | Liu, Y.; Li, J., Theory of values of singular point in complex autonomous differential system, Sci China Ser A, 33, 10-24, 1990 ·Zbl 0686.34027 |
[25] | Liu, Y., Theory of center‐focus for a class of higher‐degree critical points and infinite points, Sci China Series A: Math, 44, 365-377, 2001 ·Zbl 1012.34027 |
[26] | Liu, Y.; Huang, H., A cubic system with twelve small amplitude limit cycles, Bulletin Des Sciences Mathematiques, 129, 83-98, 2005 ·Zbl 1086.34030 |
[27] | Wang, Q.; Liu, Y.; Du, C., Small limit cycles bifurcating from fine focus points in quartic order z_3‐equivariant vector fields, J Math Anal Appl, 337, 524-536, 2008 ·Zbl 1134.34020 |
[28] | Huang, W.; Liu, Y.; Zhu, F., The center‐focus problem of a class of polynomial differential systems with degenerate critical points, Int J Non‐Linear Sci Numer Simulat, 10, 1167-1179, 2009 |
[29] | Huang, W.; Chen, A.; Xu, Q., Bifurcation of limit cycles and isochronous centers for a quartic system, Int J Bifurc Chaos, 10, 6637-6643, 2013 |
[30] | Wang, Q.; Huang, W.; Wu, H., Bifurcation of limit cycles for 3D Lotka‐Volterra competitive systems, Acta Appl Math, 114, 207-218, 2011 ·Zbl 1223.34073 |
[31] | Wang, Q.; Huang, W.; Feng, J., Multiple limit cycles and centers on center manifolds for Lorenz system, Appl Math Comput, 238, 281-288, 2014 ·Zbl 1334.37089 |
[32] | Du, C.; Liu, Y.; Huang, W., A class of three‐dimensional quadratic systems with ten limit cycles, Int J Bifurc Chaos, 26, 2016 ·Zbl 1347.34049 |
[33] | Carr, J., Applications of Centre Manifold Theory, Appl. Math. Sci. vol. 35, 1981, New York: Springer ·Zbl 0464.58001 |
[34] | Wang, Q.; Huang, W., The equivalence between singular point quantities and Liapunov constants on center manifold, Advances in Difference Equations, 2012, 78, 2012 ·Zbl 1294.34045 |
[35] | Llibre, J.; Zhang, X., On the Darboux integrability of polynomial differential systems, Qual Theory Dyn Syst, 2012, 129-144, 2012 ·Zbl 1266.34002 |
[36] | Romanovski, VG; Xia, Y.; Zhang, X., Varieties of local integrability of analytic differential systems and their applications. J, Differential Equations, 257, 3079-3101, 2014 ·Zbl 1305.34022 |
[37] | Mahdi, A.; Pessoa, C.; Shafer, DS, Centers on center manifolds in the L \(\ddot{\operatorname{u}}\) system, Phys Lett A, 375, 3509-3511, 2011 ·Zbl 1252.70046 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.