Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Hopf bifurcation and the centers on center manifold for a class of three-dimensional circuit system.(English)Zbl 1453.34069

The authors study the three-dimensional Chua’s circuit system with \(f(x)=c x^2\) and \(f(x) =c x^3\). They compute the order of all fine foci on the local center manifolds for both cases. The tools utilized here are calculations of normal forms and Darboux methods.
Reviewer: Hao Wu (Nanjing)

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
94C60 Circuits in qualitative investigation and simulation of models
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C45 Invariant manifolds for ordinary differential equations

Cite

References:

[1]Li, J.; Liu, Y., New results on the study of Zq‐equivariant planar polynomial vector fields, Qual Theory Dyn Syst, 9, 167-219, 2010 ·Zbl 1213.34059
[2]Li, C.; Liu, C.; Yang, J., A cubic system with thirteen limit cycles, J, Differ Equ, 246, 3609-3619, 2009 ·Zbl 1176.34037
[3]Li, J., Hilbert’s 16th problem and bifurcations of planar polynomial vector fields, Int J Bifurc Chaos, 13, 47-106, 2003 ·Zbl 1063.34026
[4]Romanovski, VG; Shafer, DS, The center and cyclicity problems: a computational algebra approach, 2009, Springer Science & Business Media: Birkhäuser Boston, Inc.: Boston, MA ·Zbl 1192.34003
[5]Guo, L.; Yu, P.; Chen, Y., Twelve limit cycles in 3D quadratic vector fields with Z_3 symmetry, Int J Bifurc Chaos, 28, 2018 ·Zbl 1404.34033
[6]Dulac, H., D’etermination et int’egration d’une certaine classe d equations diff’erentielles ayant pour point singulier un centre, Bull Sci Math, 32, 230-252, 1908 ·JFM 39.0374.01
[7]Yu, P.; Tian, Y., Twelve limit cycles around a singular point in a planar cubic‐degree polynomial system, Commun Nonlinear Sci Numer Simulat, 19, 2690-2705, 2014 ·Zbl 1510.37083
[8]Wang, Q.; Liu, Y.; Chen, H., Hopf bifurcation for a class of three‐dimensional nonlinear dynamic systems, Bull Sci Math, 134, 786-798, 2010 ·Zbl 1204.37051
[9]Yu, P.; Han, M., Ten limit cycles around a center‐type singular point in a 3‐d quadratic system with quadratic perturbation, Appl Math Lett, 44, 17-20, 2015 ·Zbl 1336.34051
[10]Gyllenberg, M.; Yan, P., Four limit cycles for a 3D competitive Lotka‐Volterra system with a heteroclinic cycle, Comput Math Appl, 58, 649-669, 2009 ·Zbl 1189.34080
[11]Wang, Q.; Wu, H.; Li, B., Limit cycles and singular point quantities for a 3D Lotka‐Volterra system, Appl Math Comput, 217, 8856-8859, 2011 ·Zbl 1220.34051
[12]Liu, L.; Aybar, OO; Romanovski, VG; Zhang, W., Identifying weak foci and centers in Maxwell‐Bloch system, J Math, 430, 549-571, 2015 ·Zbl 1322.34050
[13]García, IA; Maza, S.; Shafer, DS, Cyclicity of polynomial nondegenerate centers on center manifolds, J Differ Equations, 265, 5767-5808, 2018 ·Zbl 1434.37030
[14]García, IA; Maza, S.; Shafer, DS, Center cyclicity of Lorenz, Chen and Lü systems, Nonlinear Anal, 188, 362-376, 2019 ·Zbl 1428.37046
[15]Matsumoto, T.; Chua, LO; Komuro, M., The double scroll, IEEE Trans Circuits Syst, 32, 797-818, 1985 ·Zbl 0578.94023
[16]Chua, LO; Komuro, M.; Matsumoto, T., The double scroll family, IEEE Trans Circuits Syst, 33, 1072-1118, 2003 ·Zbl 0634.58015
[17]Messias, M.; Braga, DC; Mello, LF, Degenerate Hopf bifurcations in Chua’s system, Int J Bifurc Chaos, 19, 497-515, 2009 ·Zbl 1170.34333
[18]Llibre, J.; Makhlouf, A.; Badi, S., 3‐dimensional Hopf bifurcation via averaging theory of second order, Discrete Cont Dyn Syst, 25, 1287-1295, 2009 ·Zbl 1186.37059
[19]Barreira, L.; Llibre, J.; Valls, C., Bifurcation of limit cycles from a 4‐dimensional center in ℝ^m in resonance 1: N, J Math Anal Appl, 389, 754-768, 2012 ·Zbl 1242.34066
[20]Buica, A.; Garca, I.; Maza, S., Existence of inverse Jacobi multipliers around Hopf points in ℝ^3: emphasis on the center problem, J Differential Equations, 252, 6324-6336, 2012 ·Zbl 1252.37040
[21]Buica, A.; Garca, I.; Maza, S., Multiple Hopf bifurcation in ℝ^3 and inverse Jacobi multipliers, J Differ Equations, 256, 310-325, 2014 ·Zbl 1346.37050
[22]Tian, Y.; Yu, P., An explicit recursive formula for computing the normal form and center manifold of n‐dimensional differential systems associated with Hopf bifurcation, Int J Bifurcation Chaos, 23, 2013 ·Zbl 1272.34004
[23]Edneral, VF; Mahdi, A.; Romanovskic, VG; Shafer, DS, The center problem on a center manifold in ℝ^3, Nonlinear Anal Real World Appl, 75, 2614-2622, 2012 ·Zbl 1259.34021
[24]Liu, Y.; Li, J., Theory of values of singular point in complex autonomous differential system, Sci China Ser A, 33, 10-24, 1990 ·Zbl 0686.34027
[25]Liu, Y., Theory of center‐focus for a class of higher‐degree critical points and infinite points, Sci China Series A: Math, 44, 365-377, 2001 ·Zbl 1012.34027
[26]Liu, Y.; Huang, H., A cubic system with twelve small amplitude limit cycles, Bulletin Des Sciences Mathematiques, 129, 83-98, 2005 ·Zbl 1086.34030
[27]Wang, Q.; Liu, Y.; Du, C., Small limit cycles bifurcating from fine focus points in quartic order z_3‐equivariant vector fields, J Math Anal Appl, 337, 524-536, 2008 ·Zbl 1134.34020
[28]Huang, W.; Liu, Y.; Zhu, F., The center‐focus problem of a class of polynomial differential systems with degenerate critical points, Int J Non‐Linear Sci Numer Simulat, 10, 1167-1179, 2009
[29]Huang, W.; Chen, A.; Xu, Q., Bifurcation of limit cycles and isochronous centers for a quartic system, Int J Bifurc Chaos, 10, 6637-6643, 2013
[30]Wang, Q.; Huang, W.; Wu, H., Bifurcation of limit cycles for 3D Lotka‐Volterra competitive systems, Acta Appl Math, 114, 207-218, 2011 ·Zbl 1223.34073
[31]Wang, Q.; Huang, W.; Feng, J., Multiple limit cycles and centers on center manifolds for Lorenz system, Appl Math Comput, 238, 281-288, 2014 ·Zbl 1334.37089
[32]Du, C.; Liu, Y.; Huang, W., A class of three‐dimensional quadratic systems with ten limit cycles, Int J Bifurc Chaos, 26, 2016 ·Zbl 1347.34049
[33]Carr, J., Applications of Centre Manifold Theory, Appl. Math. Sci. vol. 35, 1981, New York: Springer ·Zbl 0464.58001
[34]Wang, Q.; Huang, W., The equivalence between singular point quantities and Liapunov constants on center manifold, Advances in Difference Equations, 2012, 78, 2012 ·Zbl 1294.34045
[35]Llibre, J.; Zhang, X., On the Darboux integrability of polynomial differential systems, Qual Theory Dyn Syst, 2012, 129-144, 2012 ·Zbl 1266.34002
[36]Romanovski, VG; Xia, Y.; Zhang, X., Varieties of local integrability of analytic differential systems and their applications. J, Differential Equations, 257, 3079-3101, 2014 ·Zbl 1305.34022
[37]Mahdi, A.; Pessoa, C.; Shafer, DS, Centers on center manifolds in the L \(\ddot{\operatorname{u}}\) system, Phys Lett A, 375, 3509-3511, 2011 ·Zbl 1252.70046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp