[1] | Ando, H. and Haagerup, U.. Ultraproducts of von Neumann algebras. J. Funct. Anal.266 (2014), 6842-6913. ·Zbl 1305.46049 |
[2] | Boutonnet, R. and Houdayer, C.. Amenable absorption in amalgamated free product von Neumann algebras. Kyoto J. Math. 58 (2018), 583-593. ·Zbl 1406.46045 |
[3] | Boutonnet, R., Houdayer, C. and Raum, S.. Amalgamated free product type III factors with at most one Cartan subalgebra. Compos. Math.150 (2014), 143-174. ·Zbl 1308.46067 |
[4] | Boutonnet, R., Houdayer, C. and Vaes, S.. Strong solidity of free Araki-Woods factors. Amer. J. Math. 140 (2018), 1231-1252. ·Zbl 1458.46050 |
[5] | Connes, A.. Une classification des facteurs de type III. Ann. Sci. École Norm. Sup.6 (1973), 133-252. ·Zbl 0274.46050 |
[6] | Connes, A.. Almost periodic states and factors of type III_1. J. Funct. Anal.16 (1974), 415-445. ·Zbl 0302.46050 |
[7] | Connes, A.. Outer conjugacy classes of automorphisms of factors. Ann. Sci. École Norm. Sup.8 (1975), 383-419. ·Zbl 0342.46052 |
[8] | Connes, A.. Classification of injective factors. Cases II_1, II_∞, III_λ, λ ≠ 1. Ann. Math.74 (1976), 73-115. ·Zbl 0343.46042 |
[9] | Connes, A.. On the spatial theory of von Neumann algebras. J. Funct. Anal.35 (1980), 153-164. ·Zbl 0443.46042 |
[10] | Feldman, J. and Moore, C. C.. Ergodic equivalence relations, cohomology, and von Neumann algebras. I and II. Trans. Amer. Math. Soc.234 (1977), 289-324, 325-359. ·Zbl 0369.22010 |
[11] | Gaboriau, D.. Coût des relations d’équivalence et des groupes. Invent. Math.139 (2000), 41-98. ·Zbl 0939.28012 |
[12] | Haagerup, U.. The standard form of von Neumann algebras. Math. Scand.37 (1975), 271-283. ·Zbl 0304.46044 |
[13] | Haagerup, U.. Operator valued weights in von Neumann algebras, I. J. Funct. Anal.32 (1979), 175-206. ·Zbl 0426.46046 |
[14] | Haagerup, U.. Operator valued weights in von Neumann algebras, II. J. Funct. Anal.33 (1979), 339-361. ·Zbl 0426.46047 |
[15] | Houdayer, C. and Isono, Y.. Bi-exact groups, strongly ergodic actions and group measure space type III factors with no central sequence. Comm. Math. Phys.348 (2016), 991-1015. ·Zbl 1367.46049 |
[16] | Houdayer, C. and Isono, Y.. Unique prime factorization and bicentralizer problem for a class of type III factors. Adv. Math.305 (2017), 402-455. ·Zbl 1371.46050 |
[17] | Houdayer, C. and Ueda, Y.. Asymptotic structure of free product von Neumann algebras. Math. Proc. Cambridge Philos. Soc.161 (2016), 489-516. ·Zbl 1379.46047 |
[18] | Houdayer, C. and Ueda, Y.. Rigidity of free product von Neumann algebras. Compos. Math.152 (2016), 2461-2492. ·Zbl 1379.46046 |
[19] | Houdayer, C. and Vaes, S.. Type III factors with unique Cartan decomposition. J. Math. Pures Appl.100 (2013), 564-590. ·Zbl 1291.46052 |
[20] | Houdayer, C., Marrakchi, A. and Verraedt, P.. Fullness and Connes’ τ invariant of type III tensor product factors. J. Math. Pures Appl. 121 (2019), 113-134. ·Zbl 1417.46042 |
[21] | Houdayer, C., Marrakchi, A. and Verraedt, P.. Strongly ergodic equivalence relations: spectral gap and type III invariants. To appear in Ergodic Theory Dynam. Systems. arXiv:1704.07326. ·Zbl 1417.37047 |
[22] | Houdayer, C., Shlyakhtenko, D. and Vaes, S.. Classification of a family of non almost periodic free Araki-Woods factors. To appear in J. Eur. Math. Soc. arXiv:1605.06057. ·Zbl 1434.46037 |
[23] | Ioana, A.. Cartan subalgebras of amalgamated free product II_1 factors. With an appendix joint with Stefaan Vaes. Ann. Sci. École Norm. Sup.48 (2015), 71-130. ·Zbl 1351.46058 |
[24] | Ioana, A., Peterson, J. and Popa, S.. Amalgamated free products of w-rigid factors and calculation of their symmetry groups. Acta Math.200 (2008), 85-153. ·Zbl 1149.46047 |
[25] | Isono, Y.. Unique prime factorization for infinite tensor product factors. arXiv:1712.00925. ·Zbl 1418.46027 |
[26] | Jones, V. F. R.. Index for subfactors. Invent. Math.72 (1983), 1-25. ·Zbl 0508.46040 |
[27] | Jones, V. F. R. and Schmidt, K.. Asymptotically invariant sequences and approximate finiteness. Amer. J. Math.109 (1987), 91-114. ·Zbl 0638.28014 |
[28] | Kadison, R. V.. Diagonalizing matrices. Amer. J. Math.106 (1984), 1451-1468. ·Zbl 0585.46048 |
[29] | Kosaki, H.. Extension of Jones’ theory on index to arbitrary factors. J. Funct. Anal.66 (1986), 123-140. ·Zbl 0607.46034 |
[30] | Marrakchi, A.. Spectral gap characterization of full type III factors. To appear in J. Reine Angew. Math. arXiv:1605.09613. ·Zbl 1433.46040 |
[31] | Masuda, T. and Tomatsu, R.. Classification of actions of discrete Kac algebras on injective factors. Mem. Amer. Math. Soc.245 (2017), no. 1160, ix+118 pp. ·Zbl 1376.46052 |
[32] | Mcduff, D.. Central sequences and the hyperfinite factor. Proc. London Math. Soc.21 (1970), 443-461. ·Zbl 0204.14902 |
[33] | Murray, F. and Von Neumann, J.. Rings of operators. IV. Ann. Math.44 (1943), 716-808. ·Zbl 0060.26903 |
[34] | Ocneanu, A.. Actions of discrete amenable groups on von Neumann algebras. Lecture Notes in Mathematics, 1138. Springer-Verlag, Berlin, 1985. iv+115 pp. ·Zbl 0608.46035 |
[35] | Ozawa, N. and Popa, S.. On a class of II_1 factors with at most one Cartan subalgebra. Ann. Math.172 (2010), 713-749. ·Zbl 1201.46054 |
[36] | Peterson, J.. L^2-rigidity in von Neumann algebras. Invent. Math.175 (2009), 417-433. ·Zbl 1170.46053 |
[37] | Pimsner, M. and Popa, S.. Entropy and index for subfactors. Ann. Sci. École Norm. Sup.19 (1986), 57-106. ·Zbl 0646.46057 |
[38] | Popa, S.. On a problem of R.V. Kadison on maximal abelian *-subalgebras in factors. Invent. Math.65 (1981), 269-281. ·Zbl 0481.46028 |
[39] | Popa, S.. Maximal injective subalgebras in factors associated with free groups. Adv. Math.50 (1983), 27-48. ·Zbl 0545.46041 |
[40] | Popa, S.. Markov traces on universal Jones algebras and subfactors of finite index. Invent. Math.111 (1993), 375-405. ·Zbl 0787.46047 |
[41] | Popa, S.. Classification of subfactors and their endomorphisms. CBMS Regional Conference Series in Mathematics, 86. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1995. x+110 pp. ·Zbl 0865.46044 |
[42] | Popa, S.. On a class of type II_1 factors with Betti numbers invariants. Ann. Math.163 (2006), 809-899. ·Zbl 1120.46045 |
[43] | Popa, S.. Strong rigidity of II_1 factors arising from malleable actions of w-rigid groups I. Invent. Math.165 (2006), 369-408. ·Zbl 1120.46043 |
[44] | Popa, S.. On the superrigidity of malleable actions with spectral gap. J. Amer. Math. Soc.21 (2008), 981-1000. ·Zbl 1222.46048 |
[45] | Takesaki, M.. Theory of operator algebras. II. Encyclopaedia of Mathematical Sciences, 125. Operator Algebras and Non-commutative Geometry, 6. Springer-Verlag, Berlin, 2003. xxii+518 pp. |
[46] | Ueda, Y.. Amalgamated free products over Cartan subalgebra. Pacific J. Math.191 (1999), 359-392. ·Zbl 1030.46085 |
[47] | Ueda, Y.. Fullness, Connes’ χ-groups, and ultra-products of amalgamated free products over Cartan subalgebras. Trans. Amer. Math. Soc.355 (2003), 349-371. ·Zbl 1028.46097 |
[48] | Ueda, Y.. Factoriality, type classification and fullness for free product von Neumann algebras. Adv. Math.228 (2011), 2647-2671. ·Zbl 1252.46059 |
[49] | Ueda, Y.. On type III_1 factors arising as free products. Math. Res. Lett.18 (2011), 909-920. ·Zbl 1243.46053 |
[50] | Ueda, Y.. Some analysis on amalgamated free products of von Neumann algebras in non-tracial setting. J. London Math. Soc.88 (2013), 25-48. ·Zbl 1285.46048 |
[51] | Voiculescu, D.-V.. Symmetries of some reduced free product C*-algebras. Operator algebras and Their Connections with Topology and Ergodic Theory, Lecture Notes in Mathematics 1132. Springer-Verlag, (1985), 556-588. ·Zbl 0618.46048 |
[52] | Voiculescu, D.-V., Dykema, K.J. and Nica, A.. Free random variables. CRM Monograph Series 1. (Providence, RI: American Mathematical Society, 1992). ·Zbl 0795.46049 |