[1] | Akemann, G.; Burda, Z.; Kieburg, M., Universal distribution of Lyapunov exponents for products of Ginibre matrices, J. Phys. A Math. Gen., 47, 395202 (2014) ·Zbl 1327.60021 ·doi:10.1088/1751-8113/47/39/395202 |
[2] | Akemann, G., Burda, Z., Kieburg, M.: From integrable to chaotic systems: universal local statistics of Lyapunov exponents. arXiv e-prints arXiv:1809.05905 (2018) ·Zbl 1327.60021 |
[3] | Akemann, G.; Ipsen, JR, Recent exact and asymptotic results for products of independent random matrices, Acta Phys. Polonica B, 46, 1747 (2015) ·Zbl 1371.60008 ·doi:10.5506/APhysPolB.46.1747 |
[4] | Allen-Zhu, Z., Li, Y., Song, Z.: A convergence theory for deep learning via over-parameterization. arXiv preprint arXiv:1811.03962 (2018) |
[5] | Anderson, GW; Guionnet, A.; Zeitouni, O., An Introduction to Random Matrices (2009), Cambridge: Cambridge University Press, Cambridge ·Zbl 1170.91002 |
[6] | Comets, F., Moreno Flores, G. R., Ramirez, A.: Random polymers on the complete graph. arXiv e-prints arXiv:1707.01588 (2017) ·Zbl 1442.60108 |
[7] | Cotler, J.; Gur-Ari, G.; Hanada, M.; Polchinski, J.; Saad, P.; Shenker, SH; Stanford, D.; Streicher, A.; Tezuka, M., Black holes and random matrices, J. High Energy Phys., 2017, 5, 118 (2017) ·Zbl 1380.81307 ·doi:10.1007/JHEP05(2017)118 |
[8] | Crisanti, A.; Paladin, G.; Vulpiani, A., Products of Random Matrices: In Statistical Physics (2012), Berlin: Springer, Berlin ·Zbl 0784.58003 |
[9] | Deift, P., Some open problems in random matrix theory and the theory of integrable systems. II, SIGMA, 13, 016 (2017) ·Zbl 1375.37160 |
[10] | Forrester, P., Asymptotics of finite system lyapunov exponents for some random matrix ensembles, J. Phys. A Math. Theor., 48, 21, 215205 (2015) ·Zbl 1323.15021 ·doi:10.1088/1751-8113/48/21/215205 |
[11] | Forrester, PJ, Lyapunov exponents for products of complex Gaussian random matrices, J. Stat. Phys., 151, 796-808 (2013) ·Zbl 1272.82020 ·doi:10.1007/s10955-013-0735-7 |
[12] | Furstenberg, H.; Kesten, H., Products of random matrices, Ann. Math. Stat., 31, 2, 457-469 (1960) ·Zbl 0137.35501 ·doi:10.1214/aoms/1177705909 |
[13] | Goetze, F.; Kosters, H.; Tikhomirov, A., Asymptotic spectra of matrix-valued functions of independent random matrices and free probability, Random Matrices Theory Appl., 04, 08 (2014) |
[14] | Götze, F., Tikhomirov, A.: On the Asymptotic Spectrum of Products of Independent Random Matrices. arXiv e-prints arXiv:1012.2710 (2010) ·Zbl 1203.60010 |
[15] | Haeusler, E., On the rate of convergence in the central limit theorem for martingales with discrete and continuous time, Ann. Probab., 16, 275-299 (1988) ·Zbl 0639.60030 ·doi:10.1214/aop/1176991901 |
[16] | Hanin, B.: Which neural net architectures give rise to exploding and vanishing gradients? In: Advances in Neural Information Processing Systems (2018) |
[17] | Ipsen, JR, Lyapunov exponents for products of rectangular real, complex and quaternionic ginibre matrices, J. Phys. A Math. Theor., 48, 15, 155204 (2015) ·Zbl 1316.15041 ·doi:10.1088/1751-8113/48/15/155204 |
[18] | Isopi, M.; Newman, CM, The triangle law for lyapunov exponents of large random matrices, Commun. Math. Phys., 143, 591-598 (1992) ·Zbl 0759.15019 ·doi:10.1007/BF02099267 |
[19] | Jiang, T.; Qi, Y., Spectral radii of large non-hermitian random matrices, J. Theor. Probab., 30, 1, 326-364 (2017) ·Zbl 1362.15024 ·doi:10.1007/s10959-015-0634-8 |
[20] | Pennington, J., Schoenholz, S., Ganguli, S.: The emergence of spectral universality in deep networks. In: International Conference on Artificial Intelligence and Statistics, AISTATS: 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, pp. 1924-1932 (2018) |
[21] | Kargin, V., On the largest Lyapunov exponent for products of Gaussian matrices, J. Stat. Phys., 157, 70-83 (2014) ·Zbl 1307.15056 ·doi:10.1007/s10955-014-1077-9 |
[22] | Kargin, V., Lyapunov exponents of free operators, J. Funct. Anal., 255, 8, 1874-1888 (2008) ·Zbl 1163.46042 ·doi:10.1016/j.jfa.2008.08.011 |
[23] | Liu, D.-Z., Wang, D., Wang, Y.: Lyapunov exponent, universality and phase transition for products of random matrices. arXiv e-prints arXiv:1810.00433 (2018) |
[24] | Mingo, J.; Speicher, R., Free Probability and Random Matrices (2017), New York: Springer, New York ·Zbl 1387.60005 |
[25] | Newman, CM, The distribution of lyapunov exponents: exact results for random matrices, Commun. Math. Phys., 103, 1, 121-126 (1986) ·Zbl 0593.58051 ·doi:10.1007/BF01464284 |
[26] | O’Rourke, S., Soshnikov, A.: Products of independent non-Hermitian random matrices. arXiv e-prints arXiv:1012.4497 (2010) ·Zbl 1244.60011 |
[27] | Oseledets, VI, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskovskogo Matematicheskogo Obshchestva, 19, 179-210 (1968) ·Zbl 0236.93034 |
[28] | Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4788-4798 (2017) |
[29] | Pennington, J., Worah, P.: Nonlinear random matrix theory for deep learning. In: Advances in Neural Information Processing Systems, pp. 2634-2643 (2017) ·Zbl 1459.60012 |
[30] | Pollicott, M., Maximal lyapunov exponents for random matrix products, Invent. Math., 181, 1, 209-226 (2010) ·Zbl 1196.37032 ·doi:10.1007/s00222-010-0246-y |
[31] | Tucci, G., Asymptotic products of independent gaussian random matrices with correlated entries, Electron. Commun. Probab., 16, 353-364 (2011) ·Zbl 1225.15037 ·doi:10.1214/ECP.v16-1635 |
[32] | Tulino, A.; Verdú, S., Random matrix theory and wireless communications, Found. Trends Commun. Inf. Theory, 1, 1, 1-82 (2004) ·Zbl 1133.94014 ·doi:10.1561/0100000001 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.