Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Small amplitude limit cycles and local bifurcation of critical periods for a quartic Kolmogorov system.(English)Zbl 1446.34050

Summary: In this paper, small amplitude limit cycles and the local bifurcation of critical periods for a quartic Kolmogrov system at the single positive equilibrium point \((1,1)\) are investigated. Firstly, through the computation of the singular point values, the conditions of the critical point \((1,1)\) to be a center and to be the highest degree fine singular point are derived respectively. Then, we prove that the maximum number of small amplitude limit cycles bifurcating from the equilibrium point \((1,1)\) is 7. Furthermore, through the computation of the period constants, the conditions of the critical point \((1,1)\) to be a weak center of finite order are obtained. Finally, we determine the number of local critical periods bifurcating from the equilibrium point \((1,1)\) under the center conditions. It is the first example of a quartic Kolmogorov system with seven limit cycles and a quartic Kolmogorov system with four local critical periods created from a single positive equilibrium point.

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations

Cite

References:

[1]Amel’kin, VV; Lukashevich, NA; Sadovskii, AP, Nonlinear Oscillations in Second Order Systems (1982), Minsk: Belarusian State University, Minsk ·Zbl 0526.70024
[2]Chen, X.; Zhang, W., Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 232, 565-581 (2009) ·Zbl 1178.13015 ·doi:10.1016/j.cam.2009.06.029
[3]Chen, X.; Huang, W.; Romanovski, VG; Zhang, W., Linearizability and local bifurcation of critical periods in a cubic Kolmogorov system, J. Comput. Appl. Math., 245, 86-96 (2013) ·Zbl 1280.34033 ·doi:10.1016/j.cam.2012.12.003
[4]Chen, T.; Huang, W.; Ren, D., Weak centers and local critical periods for a \(Z_2\)-equivariant cubic system, Nonlinear Dyn., 78, 2319-2329 (2014) ·doi:10.1007/s11071-014-1560-5
[5]Chicone, C.; Jacobs, M., Bifurcation of critical periods for plane vector fields, Trans. Am. Math. Soc., 312, 433-486 (1989) ·Zbl 0678.58027 ·doi:10.1090/S0002-9947-1989-0930075-2
[6]Du, C.; Huang, W., Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model, Nonlinear Dyn., 72, 197-206 (2013) ·Zbl 1269.92065 ·doi:10.1007/s11071-012-0703-9
[7]Du, C.; Liu, Y.; Huang, W., Limit cycles bifurcations for a class of Kolmogorov model in symmetrical vector field, Int. J. Bifur. Chaos, 24, 746-753 (2014) ·Zbl 1296.34095
[8]Du, C.; Liu, Y.; Huang, W., Behavior of limit cycle bifurcations for a class of quartic Kolmogorov models in a symmetrical vector field, Appl. Math. Model., 40, 4094-4108 (2016) ·Zbl 1459.34084 ·doi:10.1016/j.apm.2015.11.029
[9]Du, C.; Liu, Y.; Mi, H., The bifurcation of limit cycles for a class of cubic Kolmogorov system (in Chinese), Chin. J. Eng. Math., 24, 746-752 (2007) ·Zbl 1140.34351
[10]Du, C.; Liu, Y.; Zhang, Q., Limit cycles in a class of quartic Kolmogorov model with three positive equilibrium points, Int. J. Bifur. Chaos, 25, 17 (2015) ·Zbl 1317.34036 ·doi:10.1142/S0218127415500807
[11]Han, M.; Lin, Y.; Yu, P., A study on the exitence of limit cycles of a planar system with third-degree polynomials, Int. J. Bifur. Chaos, 14, 41-60 (2004) ·Zbl 1078.34017 ·doi:10.1142/S0218127404009247
[12]Huang, W.; Liu, Y., Bifurcations of limit cycles from infinity for a class of quintic polynomial system, Bull. Sci. Math., 128, 291-301 (2004) ·Zbl 1070.34064 ·doi:10.1016/j.bulsci.2004.02.002
[13]Huang, W.; Chen, T.; Li, J., Isolated periodic wave trains and local critical wave lengths for a nonlinear reaction-diffusion equation, Commun. Nonlinear. Sci. Numer. Simulat., 74, 84-96 (2019) ·Zbl 1464.35148 ·doi:10.1016/j.cnsns.2019.03.003
[14]Lloyd, NG; Pearson, JM; Sáez, E.; Szántó, I., A cubic Kolmogorov system with six limit cycles, Comput. Math. Appl., 44, 445-455 (2002) ·Zbl 1210.34048 ·doi:10.1016/S0898-1221(02)00161-X
[15]Li, F., Integrability and bifurcations of limit cycles in a cubic Kolmogorov system, Int. J. Bifur. Chaos, 23, 1350061 (2013) ·Zbl 1270.34043 ·doi:10.1142/S0218127413500612
[16]Li, J., Hilbert’s 16th problem and bifurcations of planar polynomial vector fields, Int. J. Bifur. Chaos, 13, 47-106 (2003) ·Zbl 1063.34026 ·doi:10.1142/S0218127403006352
[17]Liu, Y.; Li, J., Theory of values of singular point in complex autonomous differential systems, Sci. China Ser. A, 33, 10-23 (1990) ·Zbl 0686.34027
[18]Liu, Y.; Chen, H., Formulas of singurlar point quantities and the first \(10\) saddle quantities for a class of cubic system (in Chinese), Acta Math. Sin., 25, 295-302 (2002) ·Zbl 1014.34021
[19]Liu, Y.; Huang, W., A new method to determine isochronous center conditions for polynomial differential systems, Bull. Sci. Math., 127, 133-148 (2003) ·Zbl 1034.34032 ·doi:10.1016/S0007-4497(02)00006-4
[20]Liu, Y.; Li, J.; Huang, W., Singular Point Values, Center Problem and Bifurcations of Limit Cycles of Two Dimensional Differential Autonomous Systems (2008), Beijing: Science Press, Beijing
[21]Liu, Y.; Li, J., New study on the center problem and bifurcations of limit cycles for the Lyapunov system (I ), Int. J. Bifur. Chaos, 19, 3791-3801 (2009) ·Zbl 1182.34044 ·doi:10.1142/S0218127409025110
[22]Lin, Y.; Li, J., The canonical form of the autonomous planar system and the critical point of the closed orbit period (in Chinese), Acta Math. Sin., 34, 490-501 (1991) ·Zbl 0744.34041
[23]Mi, H.; Du, C., The central conditidn and bifurcation of limit cycles for a class of cubic Kolmogorov system, Math. Theory Appl., 25, 19-21 (2005) ·Zbl 1504.34095
[24]Romanovski, VG; Han, M., Critical period bifurcations of a cubic system, J. Phys. A: Math. Gen., 36, 5011-5022 (2003) ·Zbl 1037.34034 ·doi:10.1088/0305-4470/36/18/306
[25]Romanovski, VG; Fernandes, W.; Tang, Y.; Tian, Y., Linearizability and critical period bifurcations of a generalized Riccati system, Nonlinear Dyn., 90, 257-269 (2017) ·Zbl 1390.70056 ·doi:10.1007/s11071-017-3659-y
[26]Rousseau, C.; Toni, B., Local bifurcations of critical periods in vector fields with homogeneous nonliearities of the third degree, Can. J. Math., 36, 473-484 (1993) ·Zbl 0792.58030 ·doi:10.4153/CMB-1993-063-7
[27]Rousseau, C.; Toni, B., Local bifurcations of critical periods in the reduced Kukles system, Can. J. Math., 49, 338-358 (1997) ·Zbl 0885.34033 ·doi:10.4153/CJM-1997-017-4
[28]Toni, B., Bifurcations of critical periods: cubic vector fields in Kapteyns normal form, Quaestiones Mathematicae, 22, 43-61 (1999) ·Zbl 0938.34023 ·doi:10.1080/16073606.1999.9632058
[29]Xu, Q.; Huang, W., The center conditions and local bifurcation of critical periods for a Liénard system, Appl. Math. Comput., 217, 6637-6643 (2011) ·Zbl 1218.34034
[30]Ye, Y.; Ye, W., Cubic Kolmogorov differential system with two limit cycles surrounding the same focus, Ann. Diff. Eqs., 1, 201-207 (1985) ·Zbl 0597.34020
[31]Yu, P.; Han, M., Critical periods of planar revertible vector field with third-degree polynomial functions, Int. J. Bifur. Chaos, 19, 419-433 (2009) ·Zbl 1170.34316 ·doi:10.1142/S0218127409022981
[32]Yu, P.; Han, M.; Zhang, J., Critical periods of third-order planar Hamiltonian systems, Int. J. Bifur. Chaos, 20, 2213-2224 (2010) ·Zbl 1196.34049 ·doi:10.1142/S0218127410027040
[33]Wu, Y.; Huang, W.; Suo, Y., Weak center and bifurcation of critical periods in a cubic \(Z_2\)-equivariant Hamiltonian vector field, Int. J. Bifur. Chaos, 25, 1550143 (2015) ·Zbl 1327.34055 ·doi:10.1142/S0218127415501436
[34]Wu, D.; Huang, W.; Wu, Y., Limit cycles of a cubic kolmogorov system (in Chinese), J. Guilin Univ. Electron. Technol., 36, 160-163 (2016)
[35]Wu, D.; Huang, W.; Wu, Y., Bifurcation of limit cycles of a class of quartic Kolmogorov system (in Chinese), J. Henan Univ. Sci. Technol. (Nat. Sci.), 37, 382-86 (2016) ·Zbl 1363.34108
[36]Zhan, J.; Huang, W.; He, D., The center and limit cycles of a quartic Kolmogorov system (in Chinese), J. Guilin Univ. Electron. Technol., 38, 242-246 (2018)
[37]Zhang, Q.; Li, F.; Zhao, Y., Limit cycles in a cubic kolmogorov system with harvest and two positive equilibrium points, Abstr. Appl. Anal., 2014, 1-6 (2014) ·Zbl 1474.92136
[38]Zhang, W.; Hou, X.; Zeng, Z., Weak centres and bifurcation of critical periods in reversible cubic systems, Comput. Math. Appl., 40, 771-782 (2000) ·Zbl 0962.34025 ·doi:10.1016/S0898-1221(00)00195-4
[39]Zou, L.; Chen, X.; Zhang, W., Local bifurcations of critical periods for cubic Liénard equations with cubic damping, J. Comput. Appl. Math., 222, 404-410 (2008) ·Zbl 1163.34349 ·doi:10.1016/j.cam.2007.11.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp