[1] | Alexeev, Valery; Brion, Michel, Toric degenerations of spherical varieties, Selecta Math. (N.S.), 10, 4, 453-478 (2004) ·Zbl 1078.14075 ·doi:10.1007/s00029-005-0396-8 |
[2] | Auroux, Denis, Mirror symmetry and \(T\)-duality in the complement of an anticanonical divisor, J. G\"okova Geom. Topol. GGT, 1, 51-91 (2007) ·Zbl 1181.53076 |
[3] | Berenstein, Arkady; Kazhdan, David, Geometric and unipotent crystals, Geom. Funct. Anal., Special Volume, Part I, (2000), 188-236 ·Zbl 1044.17006 ·doi:10.1007/978-3-0346-0422-2\_8 |
[4] | Berenstein, Arkady; Kazhdan, David, Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases. Quantum groups, Contemp. Math. 433, 13-88 (2007), Amer. Math. Soc., Providence, RI ·Zbl 1154.14035 ·doi:10.1090/conm/433/08321 |
[5] | Berenstein, Arkady; Zelevinsky, Andrei, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., 143, 1, 77-128 (2001) ·Zbl 1061.17006 ·doi:10.1007/s002220000102 |
[6] | Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-52 (2005) ·Zbl 1135.16013 ·doi:10.1215/S0012-7094-04-12611-9 |
[7] | Bern\v ste\u\i n, I. N.; Gel\cprime fand, I. M.; Ponomarev, V. A., Coxeter functors, and Gabriel’s theorem, Uspehi Mat. Nauk, 28, 2(170), 19-33 (1973) ·Zbl 0269.08001 |
[8] | Bondal, A. I., Helices, representations of quivers and Koszul algebras. Helices and vector bundles, London Math. Soc. Lecture Note Ser. 148, 75-95 (1990), Cambridge Univ. Press, Cambridge ·Zbl 0742.14010 ·doi:10.1017/CBO9780511721526.008 |
[9] | T. Bridgeland, Scattering diagrams, Hall algebras and stability conditions, preprint, 2016. ·Zbl 1388.16013 |
[10] | Br\`“ustle, Thomas; Dupont, Gr\'”egoire; P\'erotin, Matthieu, On maximal green sequences, Int. Math. Res. Not. IMRN, 16, 4547-4586 (2014) ·Zbl 1346.16009 ·doi:10.1093/imrn/rnt075 |
[11] | Caldero, Philippe, Toric degenerations of Schubert varieties, Transform. Groups, 7, 1, 51-60 (2002) ·Zbl 1050.14040 ·doi:10.1007/s00031-002-0003-4 |
[12] | Canakci, Ilke; Lee, Kyungyong; Schiffler, Ralf, On cluster algebras from unpunctured surfaces with one marked point, Proc. Amer. Math. Soc. Ser. B, 2, 35-49 (2015) ·Zbl 1350.13019 ·doi:10.1090/bproc/21 |
[13] | M. Carl, M. Pumperla, and B. Siebert, A tropical view of Landau-Ginzburg models, available at http://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf |
[14] | Cerulli Irelli, Giovanni; Keller, Bernhard; Labardini-Fragoso, Daniel; Plamondon, Pierre-Guy, Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math., 149, 10, 1753-1764 (2013) ·Zbl 1288.18011 ·doi:10.1112/S0010437X1300732X |
[15] | Cheung, Man Wai; Gross, Mark; Muller, Greg; Musiker, Gregg; Rupel, Dylan; Stella, Salvatore; Williams, Harold, The greedy basis equals the theta basis: a rank two haiku, J. Combin. Theory Ser. A, 145, 150-171 (2017) ·Zbl 1403.13036 ·doi:10.1016/j.jcta.2016.08.004 |
[16] | Cho, Cheol-Hyun; Oh, Yong-Geun, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math., 10, 4, 773-814 (2006) ·Zbl 1130.53055 ·doi:10.4310/AJM.2006.v10.n4.a10 |
[17] | Fock, Vladimir; Goncharov, Alexander, Moduli spaces of local systems and higher Teichm\`“uller theory, Publ. Math. Inst. Hautes \'”Etudes Sci., 103, 1-211 (2006) ·Zbl 1099.14025 ·doi:10.1007/s10240-006-0039-4 |
[18] | Fock, Vladimir V.; Goncharov, Alexander B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. \'Ec. Norm. Sup\'er. (4), 42, 6, 865-930 (2009) ·Zbl 1180.53081 ·doi:10.1007/978-0-8176-4745-2\_15 |
[19] | V. Fock and A. Goncharov, Cluster \(X\)-varieties at infinity, preprint, 2011. |
[20] | Fomin, Sergey; Shapiro, Michael; Thurston, Dylan, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., 201, 1, 83-146 (2008) ·Zbl 1263.13023 ·doi:10.1007/s11511-008-0030-7 |
[21] | Fomin, Sergey; Zelevinsky, Andrei, Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12, 2, 335-380 (1999) ·Zbl 0913.22011 ·doi:10.1090/S0894-0347-99-00295-7 |
[22] | Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. I. Foundations, J. Amer. Math. Soc., 15, 2, 497-529 (2002) ·Zbl 1021.16017 ·doi:10.1090/S0894-0347-01-00385-X |
[23] | Fomin, Sergey; Zelevinsky, Andrei, The Laurent phenomenon, Adv. in Appl. Math., 28, 2, 119-144 (2002) ·Zbl 1012.05012 ·doi:10.1006/aama.2001.0770 |
[24] | Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. II. Finite type classification, Invent. Math., 154, 1, 63-121 (2003) ·Zbl 1054.17024 ·doi:10.1007/s00222-003-0302-y |
[25] | Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. IV. Coefficients, Compos. Math., 143, 1, 112-164 (2007) ·Zbl 1127.16023 ·doi:10.1112/S0010437X06002521 |
[26] | Geiss, Christof; Leclerc, Bernard; Schr\"oer, Jan, Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (Grenoble), 58, 3, 825-876 (2008) ·Zbl 1151.16009 |
[27] | Gekhtman, Michael; Shapiro, Michael; Vainshtein, Alek, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs 167, xvi+246 pp. (2010), American Mathematical Society, Providence, RI ·Zbl 1217.13001 ·doi:10.1090/surv/167 |
[28] | Goncharov, Alexander; Shen, Linhui, Geometry of canonical bases and mirror symmetry, Invent. Math., 202, 2, 487-633 (2015) ·Zbl 1355.14030 ·doi:10.1007/s00222-014-0568-2 |
[29] | A. Goncharov and L. Shen, Donaldson-Thomas transformations of moduli spaces of \(G\)-local systems, preprint 2016, arXiv:1602.06479 ·Zbl 1434.13022 |
[30] | Goodearl, Kenneth R.; Yakimov, Milen T., Quantum cluster algebras and quantum nilpotent algebras, Proc. Natl. Acad. Sci. USA, 111, 27, 9696-9703 (2014) ·Zbl 1355.16037 ·doi:10.1073/pnas.1313071111 |
[31] | Gross, Mark, Mirror symmetry for \(\mathbb{P}^2\) and tropical geometry, Adv. Math., 224, 1, 169-245 (2010) ·Zbl 1190.14038 ·doi:10.1016/j.aim.2009.11.007 |
[32] | Gross, Mark, Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics 114, xvi+317 pp. (2011), Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI ·Zbl 1215.14061 ·doi:10.1090/cbms/114 |
[33] | Gross, Mark; Hacking, Paul; Keel, Sean, Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes \'Etudes Sci., 122, 65-168 (2015) ·Zbl 1351.14024 ·doi:10.1007/s10240-015-0073-1 |
[34] | Gross, Mark; Hacking, Paul; Keel, Sean, Moduli of surfaces with an anti-canonical cycle, Compos. Math., 151, 2, 265-291 (2015) ·Zbl 1330.14062 ·doi:10.1112/S0010437X14007611 |
[35] | Gross, Mark; Hacking, Paul; Keel, Sean, Birational geometry of cluster algebras, Algebr. Geom., 2, 2, 137-175 (2015) ·Zbl 1322.14032 ·doi:10.14231/AG-2015-007 |
[36] | M. Gross, P. Hacking and S. Keel, Mirror symmetry for log Calabi-Yau surfaces II, in preparation. ·Zbl 1351.14024 |
[37] | M. Gross, P. Hacking, S. Keel, and B. Siebert, Theta functions on varieties with effective anti-canonical class, preprint, 2016. ·Zbl 1502.14001 |
[38] | Gross, Mark; Pandharipande, Rahul, Quivers, curves, and the tropical vertex, Port. Math., 67, 2, 211-259 (2010) ·Zbl 1227.14049 ·doi:10.4171/PM/1865 |
[39] | Gross, Mark; Pandharipande, Rahul; Siebert, Bernd, The tropical vertex, Duke Math. J., 153, 2, 297-362 (2010) ·Zbl 1205.14069 ·doi:10.1215/00127094-2010-025 |
[40] | Gross, Mark; Siebert, Bernd, From real affine geometry to complex geometry, Ann. of Math. (2), 174, 3, 1301-1428 (2011) ·Zbl 1266.53074 ·doi:10.4007/annals.2011.174.3.1 |
[41] | Gross, Mark; Siebert, Bernd, Theta functions and mirror symmetry. Surveys in differential geometry 2016. Advances in geometry and mathematical physics, Surv. Differ. Geom. 21, 95-138 (2016), Int. Press, Somerville, MA ·Zbl 1354.14062 |
[42] | Inaba, Michi-aki; Iwasaki, Katsunori; Saito, Masa-Hiko, Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlev\'e equation of type VI. I, Publ. Res. Inst. Math. Sci., 42, 4, 987-1089 (2006) ·Zbl 1127.34055 |
[43] | Kac, V. G., Infinite root systems, representations of graphs and invariant theory, Invent. Math., 56, 1, 57-92 (1980) ·Zbl 0427.17001 ·doi:10.1007/BF01403155 |
[44] | Kac, V. G., Infinite root systems, representations of graphs and invariant theory. II, J. Algebra, 78, 1, 141-162 (1982) ·Zbl 0497.17007 ·doi:10.1016/0021-8693(82)90105-3 |
[45] | King, A. D., Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2), 45, 180, 515-530 (1994) ·Zbl 0837.16005 ·doi:10.1093/qmath/45.4.515 |
[46] | Knutson, Allen; Tao, Terence, The honeycomb model of \({\rm GL}_n({\bf C})\) tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc., 12, 4, 1055-1090 (1999) ·Zbl 0944.05097 ·doi:10.1090/S0894-0347-99-00299-4 |
[47] | Kogan, Mikhail; Miller, Ezra, Toric degeneration of Schubert varieties and Gelfand-Tsetlin polytopes, Adv. Math., 193, 1, 1-17 (2005) ·Zbl 1084.14049 ·doi:10.1016/j.aim.2004.03.017 |
[48] | Koll\'ar, J\'anos, Singularities of the minimal model program, Cambridge Tracts in Mathematics 200, x+370 pp. (2013), Cambridge University Press, Cambridge ·Zbl 1282.14028 ·doi:10.1017/CBO9781139547895 |
[49] | Kontsevich, Maxim; Soibelman, Yan, Affine structures and non-Archimedean analytic spaces. in The unity of mathematics, Progr. Math. 244, 321-385 (2006), Birkh\"auser Boston, Boston, MA ·Zbl 1114.14027 ·doi:10.1007/0-8176-4467-9\_9 |
[50] | Kontsevich, Maxim; Soibelman, Yan, Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry. in Homological mirror symmetry and tropical geometry, Lect. Notes Unione Mat. Ital. 15, 197-308 (2014), Springer, Cham ·Zbl 1326.14042 ·doi:10.1007/978-3-319-06514-4\_6 |
[51] | Lee, Kyungyong; Schiffler, Ralf, Positivity for cluster algebras, Ann. of Math. (2), 182, 1, 73-125 (2015) ·Zbl 1350.13024 ·doi:10.4007/annals.2015.182.1.2 |
[52] | Lee, Kyungyong; Li, Li; Zelevinsky, Andrei, Greedy elements in rank 2 cluster algebras, Selecta Math. (N.S.), 20, 1, 57-82 (2014) ·Zbl 1295.13031 ·doi:10.1007/s00029-012-0115-1 |
[53] | T. Mandel, Tropical theta functions and cluster varieties, Ph.D. thesis, UT Austin, 2014. |
[54] | T. Magee, Fock-Goncharov conjecture and polyhedral cones for \(U\subset SL_n\) and base affine space \(SL_n/U\), preprint, 2015. |
[55] | T. Magee, GHK mirror symmetry, the Knutson-Tao hive cone, and Littlewood-Richardson coefficients, preprint, 2017. |
[56] | Matherne, Jacob P.; Muller, Greg, Computing upper cluster algebras, Int. Math. Res. Not. IMRN, 11, 3121-3149 (2015) ·Zbl 1350.13026 |
[57] | Matsumura, Hideyuki, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, xiv+320 pp. (1989), Cambridge University Press, Cambridge ·Zbl 0666.13002 |
[58] | Muller, Greg, The existence of a maximal green sequence is not invariant under quiver mutation, Electron. J. Combin., 23, 2, Paper 2.47, 23 pp. (2016) ·Zbl 1339.05163 |
[59] | Nakanishi, Tomoki; Zelevinsky, Andrei, On tropical dualities in cluster algebras. Algebraic groups and quantum groups, Contemp. Math. 565, 217-226 (2012), Amer. Math. Soc., Providence, RI ·Zbl 1317.13054 ·doi:10.1090/conm/565/11159 |
[60] | Reineke, Markus, Poisson automorphisms and quiver moduli, J. Inst. Math. Jussieu, 9, 3, 653-667 (2010) ·Zbl 1232.53072 ·doi:10.1017/S1474748009000176 |
[61] | Reineke, Markus, Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants, Compos. Math., 147, 3, 943-964 (2011) ·Zbl 1266.16013 ·doi:10.1112/S0010437X1000521X |
[62] | M. Reineke, Personal communcation, 2014. |
[63] | Schofield, Aidan, General representations of quivers, Proc. London Math. Soc. (3), 65, 1, 46-64 (1992) ·Zbl 0795.16008 ·doi:10.1112/plms/s3-65.1.46 |