Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Canonical bases for cluster algebras.(English)Zbl 1446.13015

In the study of cluster algebras, an important question dating back to the introduction of the theory [S. Fomin andA. Zelevinsky, J. Am. Math. Soc. 15, No. 2, 497–529 (2002;Zbl 1021.16017)] concerns the description of various well-behaved bases. Good properties of a basis for a cluster algebra are that it should contain cluster monomials, and have nonnegative structure constants.
In this paper, the authors construct a set of linearly independent elements of a completion of an upper cluster algebra (of type \(\mathcal{A}\) or \(\mathcal{X}\)). This set consists of theta-functions, and is indexed by a subset \(\Theta\) of the tropical points of the mirror dual cluster variety. The authors christen the subspace spanned by these functions the middle cluster algebra – in many situations, such as in type \(\mathcal{X}\) or in type \(\mathcal{A}\) with principal coefficients, this space is contained in the upper cluster algebra and contains the ordinary one.
A conjecture ofV. V. Fock andA. B. Goncharov [Ann. Sci. Éc. Norm. Supér. (4) 42, No. 6, 865–930 (2009;Zbl 1180.53081)], false in general [M. Gross et al., Algebr. Geom. 2, No. 2, 137–175 (2015;Zbl 1322.14032)], is that the set of all tropical points of the mirror dual cluster variety should index a basis of the upper cluster algebra, and the details of the preceding paragraph are presented here as a corrected version of this conjecture. The authors also give sufficient conditions under which \(\Theta\) does consist of all tropical points, and the middle cluster algebra coincides with the upper one, so that the conjecture is true in its original form. These conditions are technical but implied by cluster-theoretically familiar ones, including acyclicity of the initial quiver, or the existence of a maximal green sequence.
The techniques used are geometric, strongly motivated by log-Calabi-Yau geometry. These include scattering diagrams and broken lines, concepts introduced in earlier work involving the authors [M. Kontsevich andY. Soibelman, Prog. Math. 244, 321–385 (2006;Zbl 1114.14027);M. Gross andB. Siebert, Ann. Math. (2) 174, No. 3, 1301–1428 (2011;Zbl 1266.53074);M. Gross, Adv. Math. 224, No. 1, 169–245 (2010;Zbl 1190.14038)]. Indeed, the structure constants for the theta functions are computed by counting broken lines, the obstruction to the Fock-Goncharov conjecture in general being that these counts can be infinite (either in the calculation of an individual structure constant, or in the sense that infinitely many structure constants involved in computing a product may be non-zero). These geometric techniques turn out to give an extremely powerful perspective on cluster algebras, and the authors show how they can be used to prove deep results such as positivity of the Laurent phenomenon [K. Lee andR. Schiffler, Ann. Math. (2) 182, No. 1, 73–125 (2015;Zbl 1350.13024)]. A precursor to this may be found in work of the first three authors, who gave a proof of the Laurent phenomenon using geometric methods [M. Gross et al., Algebr. Geom. 2, No. 2, 137–175 (2015;Zbl 1322.14032)].

MSC:

13F60 Cluster algebras
14J33 Mirror symmetry (algebro-geometric aspects)

Cite

References:

[1]Alexeev, Valery; Brion, Michel, Toric degenerations of spherical varieties, Selecta Math. (N.S.), 10, 4, 453-478 (2004) ·Zbl 1078.14075 ·doi:10.1007/s00029-005-0396-8
[2]Auroux, Denis, Mirror symmetry and \(T\)-duality in the complement of an anticanonical divisor, J. G\"okova Geom. Topol. GGT, 1, 51-91 (2007) ·Zbl 1181.53076
[3]Berenstein, Arkady; Kazhdan, David, Geometric and unipotent crystals, Geom. Funct. Anal., Special Volume, Part I, (2000), 188-236 ·Zbl 1044.17006 ·doi:10.1007/978-3-0346-0422-2\_8
[4]Berenstein, Arkady; Kazhdan, David, Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases. Quantum groups, Contemp. Math. 433, 13-88 (2007), Amer. Math. Soc., Providence, RI ·Zbl 1154.14035 ·doi:10.1090/conm/433/08321
[5]Berenstein, Arkady; Zelevinsky, Andrei, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math., 143, 1, 77-128 (2001) ·Zbl 1061.17006 ·doi:10.1007/s002220000102
[6]Berenstein, Arkady; Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-52 (2005) ·Zbl 1135.16013 ·doi:10.1215/S0012-7094-04-12611-9
[7]Bern\v ste\u\i n, I. N.; Gel\cprime fand, I. M.; Ponomarev, V. A., Coxeter functors, and Gabriel’s theorem, Uspehi Mat. Nauk, 28, 2(170), 19-33 (1973) ·Zbl 0269.08001
[8]Bondal, A. I., Helices, representations of quivers and Koszul algebras. Helices and vector bundles, London Math. Soc. Lecture Note Ser. 148, 75-95 (1990), Cambridge Univ. Press, Cambridge ·Zbl 0742.14010 ·doi:10.1017/CBO9780511721526.008
[9]T. Bridgeland, Scattering diagrams, Hall algebras and stability conditions, preprint, 2016. ·Zbl 1388.16013
[10]Br\`“ustle, Thomas; Dupont, Gr\'”egoire; P\'erotin, Matthieu, On maximal green sequences, Int. Math. Res. Not. IMRN, 16, 4547-4586 (2014) ·Zbl 1346.16009 ·doi:10.1093/imrn/rnt075
[11]Caldero, Philippe, Toric degenerations of Schubert varieties, Transform. Groups, 7, 1, 51-60 (2002) ·Zbl 1050.14040 ·doi:10.1007/s00031-002-0003-4
[12]Canakci, Ilke; Lee, Kyungyong; Schiffler, Ralf, On cluster algebras from unpunctured surfaces with one marked point, Proc. Amer. Math. Soc. Ser. B, 2, 35-49 (2015) ·Zbl 1350.13019 ·doi:10.1090/bproc/21
[13]M. Carl, M. Pumperla, and B. Siebert, A tropical view of Landau-Ginzburg models, available at http://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf
[14]Cerulli Irelli, Giovanni; Keller, Bernhard; Labardini-Fragoso, Daniel; Plamondon, Pierre-Guy, Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math., 149, 10, 1753-1764 (2013) ·Zbl 1288.18011 ·doi:10.1112/S0010437X1300732X
[15]Cheung, Man Wai; Gross, Mark; Muller, Greg; Musiker, Gregg; Rupel, Dylan; Stella, Salvatore; Williams, Harold, The greedy basis equals the theta basis: a rank two haiku, J. Combin. Theory Ser. A, 145, 150-171 (2017) ·Zbl 1403.13036 ·doi:10.1016/j.jcta.2016.08.004
[16]Cho, Cheol-Hyun; Oh, Yong-Geun, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math., 10, 4, 773-814 (2006) ·Zbl 1130.53055 ·doi:10.4310/AJM.2006.v10.n4.a10
[17]Fock, Vladimir; Goncharov, Alexander, Moduli spaces of local systems and higher Teichm\`“uller theory, Publ. Math. Inst. Hautes \'”Etudes Sci., 103, 1-211 (2006) ·Zbl 1099.14025 ·doi:10.1007/s10240-006-0039-4
[18]Fock, Vladimir V.; Goncharov, Alexander B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. \'Ec. Norm. Sup\'er. (4), 42, 6, 865-930 (2009) ·Zbl 1180.53081 ·doi:10.1007/978-0-8176-4745-2\_15
[19]V. Fock and A. Goncharov, Cluster \(X\)-varieties at infinity, preprint, 2011.
[20]Fomin, Sergey; Shapiro, Michael; Thurston, Dylan, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., 201, 1, 83-146 (2008) ·Zbl 1263.13023 ·doi:10.1007/s11511-008-0030-7
[21]Fomin, Sergey; Zelevinsky, Andrei, Double Bruhat cells and total positivity, J. Amer. Math. Soc., 12, 2, 335-380 (1999) ·Zbl 0913.22011 ·doi:10.1090/S0894-0347-99-00295-7
[22]Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. I. Foundations, J. Amer. Math. Soc., 15, 2, 497-529 (2002) ·Zbl 1021.16017 ·doi:10.1090/S0894-0347-01-00385-X
[23]Fomin, Sergey; Zelevinsky, Andrei, The Laurent phenomenon, Adv. in Appl. Math., 28, 2, 119-144 (2002) ·Zbl 1012.05012 ·doi:10.1006/aama.2001.0770
[24]Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. II. Finite type classification, Invent. Math., 154, 1, 63-121 (2003) ·Zbl 1054.17024 ·doi:10.1007/s00222-003-0302-y
[25]Fomin, Sergey; Zelevinsky, Andrei, Cluster algebras. IV. Coefficients, Compos. Math., 143, 1, 112-164 (2007) ·Zbl 1127.16023 ·doi:10.1112/S0010437X06002521
[26]Geiss, Christof; Leclerc, Bernard; Schr\"oer, Jan, Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (Grenoble), 58, 3, 825-876 (2008) ·Zbl 1151.16009
[27]Gekhtman, Michael; Shapiro, Michael; Vainshtein, Alek, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs 167, xvi+246 pp. (2010), American Mathematical Society, Providence, RI ·Zbl 1217.13001 ·doi:10.1090/surv/167
[28]Goncharov, Alexander; Shen, Linhui, Geometry of canonical bases and mirror symmetry, Invent. Math., 202, 2, 487-633 (2015) ·Zbl 1355.14030 ·doi:10.1007/s00222-014-0568-2
[29]A.  Goncharov and L.  Shen, Donaldson-Thomas transformations of moduli spaces of \(G\)-local systems, preprint 2016, arXiv:1602.06479 ·Zbl 1434.13022
[30]Goodearl, Kenneth R.; Yakimov, Milen T., Quantum cluster algebras and quantum nilpotent algebras, Proc. Natl. Acad. Sci. USA, 111, 27, 9696-9703 (2014) ·Zbl 1355.16037 ·doi:10.1073/pnas.1313071111
[31]Gross, Mark, Mirror symmetry for \(\mathbb{P}^2\) and tropical geometry, Adv. Math., 224, 1, 169-245 (2010) ·Zbl 1190.14038 ·doi:10.1016/j.aim.2009.11.007
[32]Gross, Mark, Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics 114, xvi+317 pp. (2011), Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI ·Zbl 1215.14061 ·doi:10.1090/cbms/114
[33]Gross, Mark; Hacking, Paul; Keel, Sean, Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes \'Etudes Sci., 122, 65-168 (2015) ·Zbl 1351.14024 ·doi:10.1007/s10240-015-0073-1
[34]Gross, Mark; Hacking, Paul; Keel, Sean, Moduli of surfaces with an anti-canonical cycle, Compos. Math., 151, 2, 265-291 (2015) ·Zbl 1330.14062 ·doi:10.1112/S0010437X14007611
[35]Gross, Mark; Hacking, Paul; Keel, Sean, Birational geometry of cluster algebras, Algebr. Geom., 2, 2, 137-175 (2015) ·Zbl 1322.14032 ·doi:10.14231/AG-2015-007
[36]M. Gross, P. Hacking and S. Keel, Mirror symmetry for log Calabi-Yau surfaces II, in preparation. ·Zbl 1351.14024
[37]M. Gross, P. Hacking, S. Keel, and B. Siebert, Theta functions on varieties with effective anti-canonical class, preprint, 2016. ·Zbl 1502.14001
[38]Gross, Mark; Pandharipande, Rahul, Quivers, curves, and the tropical vertex, Port. Math., 67, 2, 211-259 (2010) ·Zbl 1227.14049 ·doi:10.4171/PM/1865
[39]Gross, Mark; Pandharipande, Rahul; Siebert, Bernd, The tropical vertex, Duke Math. J., 153, 2, 297-362 (2010) ·Zbl 1205.14069 ·doi:10.1215/00127094-2010-025
[40]Gross, Mark; Siebert, Bernd, From real affine geometry to complex geometry, Ann. of Math. (2), 174, 3, 1301-1428 (2011) ·Zbl 1266.53074 ·doi:10.4007/annals.2011.174.3.1
[41]Gross, Mark; Siebert, Bernd, Theta functions and mirror symmetry. Surveys in differential geometry 2016. Advances in geometry and mathematical physics, Surv. Differ. Geom. 21, 95-138 (2016), Int. Press, Somerville, MA ·Zbl 1354.14062
[42]Inaba, Michi-aki; Iwasaki, Katsunori; Saito, Masa-Hiko, Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlev\'e equation of type VI. I, Publ. Res. Inst. Math. Sci., 42, 4, 987-1089 (2006) ·Zbl 1127.34055
[43]Kac, V. G., Infinite root systems, representations of graphs and invariant theory, Invent. Math., 56, 1, 57-92 (1980) ·Zbl 0427.17001 ·doi:10.1007/BF01403155
[44]Kac, V. G., Infinite root systems, representations of graphs and invariant theory. II, J. Algebra, 78, 1, 141-162 (1982) ·Zbl 0497.17007 ·doi:10.1016/0021-8693(82)90105-3
[45]King, A. D., Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2), 45, 180, 515-530 (1994) ·Zbl 0837.16005 ·doi:10.1093/qmath/45.4.515
[46]Knutson, Allen; Tao, Terence, The honeycomb model of \({\rm GL}_n({\bf C})\) tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc., 12, 4, 1055-1090 (1999) ·Zbl 0944.05097 ·doi:10.1090/S0894-0347-99-00299-4
[47]Kogan, Mikhail; Miller, Ezra, Toric degeneration of Schubert varieties and Gelfand-Tsetlin polytopes, Adv. Math., 193, 1, 1-17 (2005) ·Zbl 1084.14049 ·doi:10.1016/j.aim.2004.03.017
[48]Koll\'ar, J\'anos, Singularities of the minimal model program, Cambridge Tracts in Mathematics 200, x+370 pp. (2013), Cambridge University Press, Cambridge ·Zbl 1282.14028 ·doi:10.1017/CBO9781139547895
[49]Kontsevich, Maxim; Soibelman, Yan, Affine structures and non-Archimedean analytic spaces. in The unity of mathematics, Progr. Math. 244, 321-385 (2006), Birkh\"auser Boston, Boston, MA ·Zbl 1114.14027 ·doi:10.1007/0-8176-4467-9\_9
[50]Kontsevich, Maxim; Soibelman, Yan, Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry. in Homological mirror symmetry and tropical geometry, Lect. Notes Unione Mat. Ital. 15, 197-308 (2014), Springer, Cham ·Zbl 1326.14042 ·doi:10.1007/978-3-319-06514-4\_6
[51]Lee, Kyungyong; Schiffler, Ralf, Positivity for cluster algebras, Ann. of Math. (2), 182, 1, 73-125 (2015) ·Zbl 1350.13024 ·doi:10.4007/annals.2015.182.1.2
[52]Lee, Kyungyong; Li, Li; Zelevinsky, Andrei, Greedy elements in rank 2 cluster algebras, Selecta Math. (N.S.), 20, 1, 57-82 (2014) ·Zbl 1295.13031 ·doi:10.1007/s00029-012-0115-1
[53]T. Mandel, Tropical theta functions and cluster varieties, Ph.D. thesis, UT Austin, 2014.
[54]T. Magee, Fock-Goncharov conjecture and polyhedral cones for \(U\subset SL_n\) and base affine space \(SL_n/U\), preprint, 2015.
[55]T. Magee, GHK mirror symmetry, the Knutson-Tao hive cone, and Littlewood-Richardson coefficients, preprint, 2017.
[56]Matherne, Jacob P.; Muller, Greg, Computing upper cluster algebras, Int. Math. Res. Not. IMRN, 11, 3121-3149 (2015) ·Zbl 1350.13026
[57]Matsumura, Hideyuki, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, xiv+320 pp. (1989), Cambridge University Press, Cambridge ·Zbl 0666.13002
[58]Muller, Greg, The existence of a maximal green sequence is not invariant under quiver mutation, Electron. J. Combin., 23, 2, Paper 2.47, 23 pp. (2016) ·Zbl 1339.05163
[59]Nakanishi, Tomoki; Zelevinsky, Andrei, On tropical dualities in cluster algebras. Algebraic groups and quantum groups, Contemp. Math. 565, 217-226 (2012), Amer. Math. Soc., Providence, RI ·Zbl 1317.13054 ·doi:10.1090/conm/565/11159
[60]Reineke, Markus, Poisson automorphisms and quiver moduli, J. Inst. Math. Jussieu, 9, 3, 653-667 (2010) ·Zbl 1232.53072 ·doi:10.1017/S1474748009000176
[61]Reineke, Markus, Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants, Compos. Math., 147, 3, 943-964 (2011) ·Zbl 1266.16013 ·doi:10.1112/S0010437X1000521X
[62]M. Reineke, Personal communcation, 2014.
[63]Schofield, Aidan, General representations of quivers, Proc. London Math. Soc. (3), 65, 1, 46-64 (1992) ·Zbl 0795.16008 ·doi:10.1112/plms/s3-65.1.46
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp