[1] | Assem, I.; Reutenauer, C.; Smith, D., Friezes, Adv. Math., 225, 6, 3134-3165 (2010) ·Zbl 1275.13017 |
[2] | Assem, I.; Simson, D.; Skowroński, A., Elements of the Representation Theory of Associative Algebras, London Math. Soc. Student Texts, vol. 65 (2006), Cambridge University Press ·Zbl 1092.16001 |
[3] | Baur, K.; Fellner, K.; Parsons, M. J.; Tschabold, M., Growth behaviour of periodic tame friezes ·Zbl 1416.05067 |
[4] | Buan, A.; Marsh, R.; Reineke, M.; Reiten, I.; Todorov, G., Tilting theory and cluster combinatorics, Adv. Math., 204, 2, 572-618 (2006) ·Zbl 1127.16011 |
[5] | Caldero, P.; Keller, B., From triangulated categories to cluster algebras. II, Ann. Sci. Éc. Norm. Supér. (4), 39, 6, 983-1009 (2006), (in English, French summary) ·Zbl 1115.18301 |
[6] | Caldero, P.; Keller, B., From triangulated categories to cluster algebras, Invent. Math., 172, 1, 169-211 (2008) ·Zbl 1141.18012 |
[7] | Çanakçı, İ.; Schiffler, R., Snake graph calculus and cluster algebras from surfaces, J. Algebra, 382, 240-281 (2013) ·Zbl 1319.13012 |
[8] | Çanakçı, İ.; Schiffler, R., Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs, Math. Z., 281, 1, 55-102 (2015) ·Zbl 1375.13029 |
[9] | Çanakçı, İ.; Schiffler, R., Snake graph calculus and cluster algebras from surfaces III: band graphs and snake rings, Int. Math. Res. Not., Article rnx157 pp. (2017) |
[10] | Conway, J. H.; Coxeter, H. S.M., Triangulated polygons and frieze patterns, Math. Gaz., 57, 87-94 (1973) ·Zbl 0285.05028 |
[11] | Dlab, V.; Ringel, C. M., Indecomposable representations of graphs and algebras, Mem. Am. Math. Soc., 6, 173 (1976), v+57 pp. ·Zbl 0332.16015 |
[12] | Donovan, P.; Freislich, M. R., The Representation Theory of Finite Graphs and Associated Algebras, Carleton Mathematical Lecture Notes, vol. 5 (1973), Carleton University: Carleton University Ottawa, ON, iii+83 pp. ·Zbl 0304.08006 |
[13] | Fomin, S.; Shapiro, M.; Thurston, D., Cluster algebras and triangulated surfaces. Part I: cluster complexes, Acta Math., 201, 83-146 (2008) ·Zbl 1263.13023 |
[14] | Fomin, S.; Zelevinsky, A., Cluster algebras I: foundations, J. Am. Math. Soc., 15, 497-529 (2002) ·Zbl 1021.16017 |
[15] | Fomin, S.; Zelevinsky, A., Cluster algebras. II. Finite type classification, Invent. Math., 154, 1, 63-121 (2003) ·Zbl 1054.17024 |
[16] | Fomin, S.; Zelevinsky, A., Cluster algebras. IV. Coefficients, Compos. Math., 143, 1, 112-164 (2007) ·Zbl 1127.16023 |
[17] | Gabriel, P., Unzerlegbare Darstellungen. I, Manuscr. Math.. Manuscr. Math., Manuscr. Math., 6, 309-103 (1972), (in German, English summary); correction: ·Zbl 0232.08001 |
[18] | Gunawan, E.; Musiker, G.; Vogel, H., Cluster algebraic interpretation of infinite friezes ·Zbl 1420.05033 |
[19] | Igusa, K.; Schiffler, R., Frieze varieties are invariant under Coxeter mutation ·Zbl 1464.13019 |
[20] | Keller, B.; Scherotzke, S., Linear recurrence relations for cluster variables of affine quivers, Adv. Math., 228, 1842-1862 (2011) ·Zbl 1252.16012 |
[21] | Lax, P., Linear Algebra and Its Applications, Pure and Applied Mathematics (Hoboken) (2007), Wiley-Interscience [John Wiley & Sons]: Wiley-Interscience [John Wiley & Sons] Hoboken, NJ ·Zbl 1152.15001 |
[22] | Lee, K.; Schiffler, R., Positivity for cluster algebras, Ann. Math., 182, 1, 73-125 (2015) ·Zbl 1350.13024 |
[23] | Lorscheid, O.; Weist, T., Representation type via Euler characteristics and singularities of quiver Grassmannians ·Zbl 1441.14160 |
[24] | Musiker, G.; Schiffler, R.; Williams, L., Positivity for cluster algebras from surfaces, Adv. Math., 227, 2241-2308 (2011) ·Zbl 1331.13017 |
[25] | Musiker, G.; Schiffler, R.; Williams, L., Bases for cluster algebras from surfaces, Compos. Math., 149, 2, 217-263 (2013) ·Zbl 1263.13024 |
[26] | Musiker, G.; Williams, L., Matrix formulae and skein relations for cluster algebras from surfaces, Int. Math. Res. Not., 13, 2891-2944 (2013) ·Zbl 1320.13028 |
[27] | Nazarova, L. A., Representations of quivers of infinite type, Izv. Akad. Nauk SSSR, Ser. Mat., 37, 752-791 (1973), (in Russian) ·Zbl 0298.15012 |
[28] | de la Peña, J., Coxeter transformations and the representation theory of algebras, (Finite-Dimensional Algebras and Related Topics. Finite-Dimensional Algebras and Related Topics, Ottawa, ON, 1992. Finite-Dimensional Algebras and Related Topics. Finite-Dimensional Algebras and Related Topics, Ottawa, ON, 1992, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 424 (1994), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 223-253 ·Zbl 0811.16009 |
[29] | Ringel, C. M., The spectral radius of the Coxeter transformations for a generalized Cartan matrix, Math. Ann., 300, 2, 331-339 (1994) ·Zbl 0819.15008 |
[30] | Schiffler, R., Quiver Representations, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (2014), Springer: Springer Cham ·Zbl 1310.16015 |
[31] | Skowroński, A.; Weyman, J., The algebras of semi-invariants of quivers, Transform. Groups, 5, 4, 361-402 (2000), (English summary) ·Zbl 0986.16004 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.