Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Frieze varieties: a characterization of the finite-tame-wild trichotomy for acyclic quivers.(English)Zbl 1445.16014

In the paper under review, the authors introduce a new class of algebraic varieties called the frieze varieties. The frieze variety is defined in an elementary recursive way by constructing a set of points in the affine space. From a more conceptual viewpoint, the coordinates of these points are specializations of cluster variables in the cluster algebra associated to the quiver. Note that each frieze variety is determined by an acyclic quiver.
It is well known that the acyclic quiver is representation finite if and only if its underlying graph is a Dynkin diagram of type \(\mathbb{A}\), \(\mathbb{D}\) or \(\mathbb{E}\), and it is tame if and only if the underlying graph is an affine Dynkin diagram of type \(\widetilde{\mathbb{A}}\), \(\widetilde{\mathbb{D}}\) or \(\widetilde{\mathbb{E}}\). All other acyclic quivers are wild.
In this paper, the authors give a new characterization of the finite-tame-wild trichotomy for acyclic quivers in terms of their frieze varieties.
More precisely, they prove that an acyclic quiver is representation finite, tame, or wild, respectively, if and only if the dimension of its friezevariety is \(0\), \(1\), or \(\geq 2\), respectively.
Finally, let us mention that there are several characterizations of the finite-tame-wild trichotomy in the literature, however, it seems that the characterization given by the authors is the first one in terms of numerical invariants that are integers.

MSC:

16G60 Representation type (finite, tame, wild, etc.) of associative algebras
13F60 Cluster algebras
16G20 Representations of quivers and partially ordered sets
14M99 Special varieties

Cite

References:

[1]Assem, I.; Reutenauer, C.; Smith, D., Friezes, Adv. Math., 225, 6, 3134-3165 (2010) ·Zbl 1275.13017
[2]Assem, I.; Simson, D.; Skowroński, A., Elements of the Representation Theory of Associative Algebras, London Math. Soc. Student Texts, vol. 65 (2006), Cambridge University Press ·Zbl 1092.16001
[3]Baur, K.; Fellner, K.; Parsons, M. J.; Tschabold, M., Growth behaviour of periodic tame friezes ·Zbl 1416.05067
[4]Buan, A.; Marsh, R.; Reineke, M.; Reiten, I.; Todorov, G., Tilting theory and cluster combinatorics, Adv. Math., 204, 2, 572-618 (2006) ·Zbl 1127.16011
[5]Caldero, P.; Keller, B., From triangulated categories to cluster algebras. II, Ann. Sci. Éc. Norm. Supér. (4), 39, 6, 983-1009 (2006), (in English, French summary) ·Zbl 1115.18301
[6]Caldero, P.; Keller, B., From triangulated categories to cluster algebras, Invent. Math., 172, 1, 169-211 (2008) ·Zbl 1141.18012
[7]Çanakçı, İ.; Schiffler, R., Snake graph calculus and cluster algebras from surfaces, J. Algebra, 382, 240-281 (2013) ·Zbl 1319.13012
[8]Çanakçı, İ.; Schiffler, R., Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs, Math. Z., 281, 1, 55-102 (2015) ·Zbl 1375.13029
[9]Çanakçı, İ.; Schiffler, R., Snake graph calculus and cluster algebras from surfaces III: band graphs and snake rings, Int. Math. Res. Not., Article rnx157 pp. (2017)
[10]Conway, J. H.; Coxeter, H. S.M., Triangulated polygons and frieze patterns, Math. Gaz., 57, 87-94 (1973) ·Zbl 0285.05028
[11]Dlab, V.; Ringel, C. M., Indecomposable representations of graphs and algebras, Mem. Am. Math. Soc., 6, 173 (1976), v+57 pp. ·Zbl 0332.16015
[12]Donovan, P.; Freislich, M. R., The Representation Theory of Finite Graphs and Associated Algebras, Carleton Mathematical Lecture Notes, vol. 5 (1973), Carleton University: Carleton University Ottawa, ON, iii+83 pp. ·Zbl 0304.08006
[13]Fomin, S.; Shapiro, M.; Thurston, D., Cluster algebras and triangulated surfaces. Part I: cluster complexes, Acta Math., 201, 83-146 (2008) ·Zbl 1263.13023
[14]Fomin, S.; Zelevinsky, A., Cluster algebras I: foundations, J. Am. Math. Soc., 15, 497-529 (2002) ·Zbl 1021.16017
[15]Fomin, S.; Zelevinsky, A., Cluster algebras. II. Finite type classification, Invent. Math., 154, 1, 63-121 (2003) ·Zbl 1054.17024
[16]Fomin, S.; Zelevinsky, A., Cluster algebras. IV. Coefficients, Compos. Math., 143, 1, 112-164 (2007) ·Zbl 1127.16023
[17]Gabriel, P., Unzerlegbare Darstellungen. I, Manuscr. Math.. Manuscr. Math., Manuscr. Math., 6, 309-103 (1972), (in German, English summary); correction: ·Zbl 0232.08001
[18]Gunawan, E.; Musiker, G.; Vogel, H., Cluster algebraic interpretation of infinite friezes ·Zbl 1420.05033
[19]Igusa, K.; Schiffler, R., Frieze varieties are invariant under Coxeter mutation ·Zbl 1464.13019
[20]Keller, B.; Scherotzke, S., Linear recurrence relations for cluster variables of affine quivers, Adv. Math., 228, 1842-1862 (2011) ·Zbl 1252.16012
[21]Lax, P., Linear Algebra and Its Applications, Pure and Applied Mathematics (Hoboken) (2007), Wiley-Interscience [John Wiley & Sons]: Wiley-Interscience [John Wiley & Sons] Hoboken, NJ ·Zbl 1152.15001
[22]Lee, K.; Schiffler, R., Positivity for cluster algebras, Ann. Math., 182, 1, 73-125 (2015) ·Zbl 1350.13024
[23]Lorscheid, O.; Weist, T., Representation type via Euler characteristics and singularities of quiver Grassmannians ·Zbl 1441.14160
[24]Musiker, G.; Schiffler, R.; Williams, L., Positivity for cluster algebras from surfaces, Adv. Math., 227, 2241-2308 (2011) ·Zbl 1331.13017
[25]Musiker, G.; Schiffler, R.; Williams, L., Bases for cluster algebras from surfaces, Compos. Math., 149, 2, 217-263 (2013) ·Zbl 1263.13024
[26]Musiker, G.; Williams, L., Matrix formulae and skein relations for cluster algebras from surfaces, Int. Math. Res. Not., 13, 2891-2944 (2013) ·Zbl 1320.13028
[27]Nazarova, L. A., Representations of quivers of infinite type, Izv. Akad. Nauk SSSR, Ser. Mat., 37, 752-791 (1973), (in Russian) ·Zbl 0298.15012
[28]de la Peña, J., Coxeter transformations and the representation theory of algebras, (Finite-Dimensional Algebras and Related Topics. Finite-Dimensional Algebras and Related Topics, Ottawa, ON, 1992. Finite-Dimensional Algebras and Related Topics. Finite-Dimensional Algebras and Related Topics, Ottawa, ON, 1992, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 424 (1994), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 223-253 ·Zbl 0811.16009
[29]Ringel, C. M., The spectral radius of the Coxeter transformations for a generalized Cartan matrix, Math. Ann., 300, 2, 331-339 (1994) ·Zbl 0819.15008
[30]Schiffler, R., Quiver Representations, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (2014), Springer: Springer Cham ·Zbl 1310.16015
[31]Skowroński, A.; Weyman, J., The algebras of semi-invariants of quivers, Transform. Groups, 5, 4, 361-402 (2000), (English summary) ·Zbl 0986.16004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp