Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Deformations and their controlling cohomologies of \(\mathcal{O}\)-operators.(English)Zbl 1440.17015

Summary: \(\mathcal{O}\)-operators are important in broad areas of mathematics and physics, such as integrable systems, the classical Yang-Baxter equation, pre-Lie algebras and splitting of operads. In this paper, a deformation theory of \(\mathcal{O}\)-operators is established in consistence with the general principles of deformation theories. On the one hand, \(\mathcal{O}\)-operators are shown to be characterized as the Maurer-Cartan elements in a suitable graded Lie algebra. A given \(\mathcal{O}\)-operator gives rise to a differential graded Lie algebra whose Maurer-Cartan elements characterize deformations of the given \(\mathcal{O}\)-operator. On the other hand, a Lie algebra with a representation is identified from an \(\mathcal{O}\)-operator \(T\) such that the corresponding Chevalley-Eilenberg cohomology controls deformations of \(T\), thus can be regarded as an analogue of the André-Quillen cohomology for the \(\mathcal{O}\)-operator.
Thereafter, linear and formal deformations of \(\mathcal{O}\)-operators are studied. In particular, the notion of Nijenhuis elements is introduced to characterize trivial linear deformations. Formal deformations and extendibility of order \(n\) deformations of an \(\mathcal{O}\)-operator are also characterized in terms of the new cohomology theory.
Applications are given to deformations of Rota-Baxter operators of weight 0 and skew-symmetric \(r\)-matrices for the classical Yang-Baxter equation. For skew-symmetric \(r\)-matrices, there is an independent Maurer-Cartan characterization of the deformations as well as an analogue of the André-Quillen cohomology, which turn out to have an explicit relationship with the ones obtained as \(\mathcal{O}\)-operators associated to the coadjoint representations.
Finally, linear deformations of skew-symmetric \(r\)-matrices and their corresponding triangular Lie bialgebras are studied.

MSC:

17B55 Homological methods in Lie (super)algebras
16T25 Yang-Baxter equations
17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B38 Yang-Baxter equations and Rota-Baxter operators
17B40 Automorphisms, derivations, other operators for Lie algebras and super algebras
17B56 Cohomology of Lie (super)algebras
17B62 Lie bialgebras; Lie coalgebras

Cite

References:

[1]Bai C.: Bijective 1-cocycles and classification of 3-dimensional left-symmetric algebras. Commun. Algebra 37, 1016-1057 (2009) ·Zbl 1196.17002 ·doi:10.1080/00927870802279030
[2]Bai C.: A unified algebraic approach to the classical Yang-Baxter equation. J. Phys. A: Math. Theor. 40, 11073-11082 (2007) ·Zbl 1118.17008 ·doi:10.1088/1751-8113/40/36/007
[3]Bai, C., Bellier, O., Guo, L., Ni, X.: Spliting of operations, Manin products and Rota-Baxter operators. Int. Math. Res. Not., 485-524 (2013) ·Zbl 1314.18010
[4]Balavoine, D.: Deformations of algebras over a quadratic operad. Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math. Amer. Math. Soc., Providence, vol. 202, 207-234 (1997) ·Zbl 0883.17004
[5]Baxter G.: An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 10, 731-742 (1960) ·Zbl 0095.12705 ·doi:10.2140/pjm.1960.10.731
[6]Baxter R.J.: One-dimensional anisotropic Heisenberg chain. Ann. Phys. 70, 323-337 (1972) ·doi:10.1016/0003-4916(72)90270-9
[7]Baues O.: Left-symmetric algebras for \[{\mathfrak{gl}({\rm n})}\] gl(n). Trans. Am. Math. Soc. 351, 2979-2996 (1999) ·Zbl 1113.17301 ·doi:10.1090/S0002-9947-99-02315-6
[8]Bordemann M.: Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups. Commun. Math. Phys. 135, 201-216 (1990) ·Zbl 0714.58025 ·doi:10.1007/BF02097662
[9]Burde D.: Simple left-symmetric algebras with solvable Lie algebra. Manuscr. Math. 95, 397-411 (1998) ·Zbl 0907.17008
[10]Burde D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Cent. Eur. J. Math. 4, 323-357 (2006) ·Zbl 1151.17301 ·doi:10.2478/s11533-006-0014-9
[11]Carinena J., Grabowski J., Marmo G.: Quantum bi-Hamiltonian systems. Internat. J. Modern Phys. A. 15(30), 4797-4810 (2000) ·Zbl 1002.81026 ·doi:10.1142/S0217751X00001956
[12]Chapoton F., Livernet M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 8, 395-408 (2001) ·Zbl 1053.17001 ·doi:10.1155/S1073792801000198
[13]Chari V., Pressley A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994) ·Zbl 0839.17009
[14]Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249-273 (2000) ·Zbl 1032.81026 ·doi:10.1007/s002200050779
[15]Dorfman I.: Dirac Structures and Integrability of Nonlinear Evolution Equations. Wiley, Chichester (1993) ·Zbl 0717.58026
[16]Dzhumadil’daev A.: Cohomologies and deformations of right-symmetric algebras. J. Math. Sci. 93, 836-876 (1999) ·Zbl 0938.17002 ·doi:10.1007/BF02366344
[17]Etingof P., Kazhdan D.: Quantization of Lie bialgebras. I. Sel. Math. (N.S.) 2, 1-41 (1996) ·Zbl 0863.17008 ·doi:10.1007/BF01587938
[18]Fox T.F.: An introduction to algebraic deformation theory. J. Pure Appl. Algebra 84, 17-41 (1993) ·Zbl 0772.18006 ·doi:10.1016/0022-4049(93)90160-U
[19]Gerstenhaber M.: The cohomology structure of an associative ring. Ann. Math. 78, 267-288 (1963) ·Zbl 0131.27302 ·doi:10.2307/1970343
[20]Gerstenhaber M.: On the deformation of rings and algebras. Ann. Math. (2) 79, 59-103 (1964) ·Zbl 0123.03101 ·doi:10.2307/1970484
[21]Gerstenhaber M.: On the deformation of rings and algebras. II. Ann. Math. 84, 1-19 (1966) ·Zbl 0147.28903 ·doi:10.2307/1970528
[22]Gerstenhaber M.: On the deformation of rings and algebras. III. Ann. Math. 88, 1-34 (1968) ·Zbl 0182.05902 ·doi:10.2307/1970553
[23]Gerstenhaber M.: On the deformation of rings and algebras. IV. Ann. Math. 99, 257-276 (1974) ·Zbl 0281.16016 ·doi:10.2307/1970900
[24]Guo, L.: An introduction to Rota-Baxter algebra. Surveys of Modern Mathematics, 4. International Press, Somerville, MA; Higher Education Press, Beijing, xii+226 pp (2012) ·Zbl 1271.16001
[25]Hartshore R.: Deformation Theory, Graduate Texts in Math. 257. Springer, Berlin (2010) ·Zbl 1186.14004
[26]Kodaira K., Spencer D.: On deformations of complex analytic structures I and II. Ann. Math. 67, 328-466 (1958) ·Zbl 0128.16901 ·doi:10.2307/1970009
[27]Kontsevich M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48, 35-72 (1999) ·Zbl 0945.18008 ·doi:10.1023/A:1007555725247
[28]Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157-216 (2003) ·Zbl 1058.53065 ·doi:10.1023/B:MATH.0000027508.00421.bf
[29]Kontsevich, M., Soibelman, Y.: Deformation theory. I [Draft] (2010) http://www.math.ksu.edu/ soibel/Book-vol1.ps
[30]Kosmann-Schwarzbach Y., Magri F.: Poisson-Lie groups and complete integrability, I: drinfeld bialgebras, dual extensions and their canonical representations. Ann. Inst. H. Poincaré Phys. Théor. 49, 433-460 (1988) ·Zbl 0667.16005
[31]Kupershmidt B.A.: What a classical r-matrix really is. J. Nonlinear Math. Phys. 6, 448-488 (1999) ·Zbl 1015.17015 ·doi:10.2991/jnmp.1999.6.4.5
[32]Loday, J.-L.: Scindement d’associativté et algébres de Hopf. in the proceedings of conference in honor of Jean Leray, Nantes (2002), Séminaire et Congrés (SMF), 9, pp. 155-172 (2004) ·Zbl 1073.16032
[33]Loday J.-L., Vallette B.: Algebraic Operads. Springer, Berlin (2012) ·Zbl 1260.18001 ·doi:10.1007/978-3-642-30362-3
[34]Mazur B.: Perturbations, deformations, and variations (and “near-misses”) in geometry, physics, and number theory. Bull. AMS 41, 307-336 (2004) ·Zbl 1057.11033 ·doi:10.1090/S0273-0979-04-01024-9
[35]Nijenhuis, A.: Sur une classe de proprits communes quelques types differents d’algebres. (French) Enseignement Math. (2). 14 1968 225-277 (1970) ·Zbl 0188.08101
[36]Nijenhuis A., Richardson R.: Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 72, 1-29 (1966) ·Zbl 0136.30502 ·doi:10.1090/S0002-9904-1966-11401-5
[37]Nijenhuis A., Richardson R.: Commutative algebra cohomology and deformations of Lie and associative algebras. J. Algebra 9, 42-105 (1968) ·Zbl 0175.31302 ·doi:10.1016/0021-8693(68)90004-5
[38]Pei J., Bai C., Guo L.: Splitting of operads and Rota-Baxter operators on operads. Appl. Categor. Struct. 25, 505-538 (2017) ·Zbl 1423.18031 ·doi:10.1007/s10485-016-9431-5
[39]Reshetikhin N.: Multiparameter quantum groups and twisted quasitriangular Hopf algebras. Lett. Math. Phys. 20, 331-335 (1990) ·Zbl 0719.17006 ·doi:10.1007/BF00626530
[40]Rieffel M.A.: Deformation quantization of Heisenberg manifolds. Commun. Math. Phys. 122, 531-562 (1989) ·Zbl 0679.46055 ·doi:10.1007/BF01256492
[41]Schomerus V.: D-branes and deformation quantization. J. High Energy Phys. 1999, 030 (1999) ·Zbl 0961.81066 ·doi:10.1088/1126-6708/1999/06/030
[42]Semonov-Tian-Shansky M.A.: What is a classical R-matrix? Funct. Anal. Appl. 17, 259-272 (1983) ·Zbl 0535.58031
[43]Uchino K.: Twisting on associative algebras and Rota-Baxter type operators. J. Noncommut. Geom. 4, 349-379 (2010) ·Zbl 1248.16027 ·doi:10.4171/JNCG/59
[44]Voronov Th: Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 202, 133-153 (2005) ·Zbl 1086.17012 ·doi:10.1016/j.jpaa.2005.01.010
[45]Wang, Q., Sheng, Y., Bai, C., Liu, J.: Nijenhuis operators on pre-Lie algebras. Commun. Contemp. Math. (2018). https://doi.org/10.1142/S0219199718500505 ·Zbl 1439.17023
[46]Yang C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312-1315 (1967) ·Zbl 0152.46301 ·doi:10.1103/PhysRevLett.19.1312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp