[1] | Bai C.: Bijective 1-cocycles and classification of 3-dimensional left-symmetric algebras. Commun. Algebra 37, 1016-1057 (2009) ·Zbl 1196.17002 ·doi:10.1080/00927870802279030 |
[2] | Bai C.: A unified algebraic approach to the classical Yang-Baxter equation. J. Phys. A: Math. Theor. 40, 11073-11082 (2007) ·Zbl 1118.17008 ·doi:10.1088/1751-8113/40/36/007 |
[3] | Bai, C., Bellier, O., Guo, L., Ni, X.: Spliting of operations, Manin products and Rota-Baxter operators. Int. Math. Res. Not., 485-524 (2013) ·Zbl 1314.18010 |
[4] | Balavoine, D.: Deformations of algebras over a quadratic operad. Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math. Amer. Math. Soc., Providence, vol. 202, 207-234 (1997) ·Zbl 0883.17004 |
[5] | Baxter G.: An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 10, 731-742 (1960) ·Zbl 0095.12705 ·doi:10.2140/pjm.1960.10.731 |
[6] | Baxter R.J.: One-dimensional anisotropic Heisenberg chain. Ann. Phys. 70, 323-337 (1972) ·doi:10.1016/0003-4916(72)90270-9 |
[7] | Baues O.: Left-symmetric algebras for \[{\mathfrak{gl}({\rm n})}\] gl(n). Trans. Am. Math. Soc. 351, 2979-2996 (1999) ·Zbl 1113.17301 ·doi:10.1090/S0002-9947-99-02315-6 |
[8] | Bordemann M.: Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups. Commun. Math. Phys. 135, 201-216 (1990) ·Zbl 0714.58025 ·doi:10.1007/BF02097662 |
[9] | Burde D.: Simple left-symmetric algebras with solvable Lie algebra. Manuscr. Math. 95, 397-411 (1998) ·Zbl 0907.17008 |
[10] | Burde D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Cent. Eur. J. Math. 4, 323-357 (2006) ·Zbl 1151.17301 ·doi:10.2478/s11533-006-0014-9 |
[11] | Carinena J., Grabowski J., Marmo G.: Quantum bi-Hamiltonian systems. Internat. J. Modern Phys. A. 15(30), 4797-4810 (2000) ·Zbl 1002.81026 ·doi:10.1142/S0217751X00001956 |
[12] | Chapoton F., Livernet M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 8, 395-408 (2001) ·Zbl 1053.17001 ·doi:10.1155/S1073792801000198 |
[13] | Chari V., Pressley A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994) ·Zbl 0839.17009 |
[14] | Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249-273 (2000) ·Zbl 1032.81026 ·doi:10.1007/s002200050779 |
[15] | Dorfman I.: Dirac Structures and Integrability of Nonlinear Evolution Equations. Wiley, Chichester (1993) ·Zbl 0717.58026 |
[16] | Dzhumadil’daev A.: Cohomologies and deformations of right-symmetric algebras. J. Math. Sci. 93, 836-876 (1999) ·Zbl 0938.17002 ·doi:10.1007/BF02366344 |
[17] | Etingof P., Kazhdan D.: Quantization of Lie bialgebras. I. Sel. Math. (N.S.) 2, 1-41 (1996) ·Zbl 0863.17008 ·doi:10.1007/BF01587938 |
[18] | Fox T.F.: An introduction to algebraic deformation theory. J. Pure Appl. Algebra 84, 17-41 (1993) ·Zbl 0772.18006 ·doi:10.1016/0022-4049(93)90160-U |
[19] | Gerstenhaber M.: The cohomology structure of an associative ring. Ann. Math. 78, 267-288 (1963) ·Zbl 0131.27302 ·doi:10.2307/1970343 |
[20] | Gerstenhaber M.: On the deformation of rings and algebras. Ann. Math. (2) 79, 59-103 (1964) ·Zbl 0123.03101 ·doi:10.2307/1970484 |
[21] | Gerstenhaber M.: On the deformation of rings and algebras. II. Ann. Math. 84, 1-19 (1966) ·Zbl 0147.28903 ·doi:10.2307/1970528 |
[22] | Gerstenhaber M.: On the deformation of rings and algebras. III. Ann. Math. 88, 1-34 (1968) ·Zbl 0182.05902 ·doi:10.2307/1970553 |
[23] | Gerstenhaber M.: On the deformation of rings and algebras. IV. Ann. Math. 99, 257-276 (1974) ·Zbl 0281.16016 ·doi:10.2307/1970900 |
[24] | Guo, L.: An introduction to Rota-Baxter algebra. Surveys of Modern Mathematics, 4. International Press, Somerville, MA; Higher Education Press, Beijing, xii+226 pp (2012) ·Zbl 1271.16001 |
[25] | Hartshore R.: Deformation Theory, Graduate Texts in Math. 257. Springer, Berlin (2010) ·Zbl 1186.14004 |
[26] | Kodaira K., Spencer D.: On deformations of complex analytic structures I and II. Ann. Math. 67, 328-466 (1958) ·Zbl 0128.16901 ·doi:10.2307/1970009 |
[27] | Kontsevich M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48, 35-72 (1999) ·Zbl 0945.18008 ·doi:10.1023/A:1007555725247 |
[28] | Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157-216 (2003) ·Zbl 1058.53065 ·doi:10.1023/B:MATH.0000027508.00421.bf |
[29] | Kontsevich, M., Soibelman, Y.: Deformation theory. I [Draft] (2010) http://www.math.ksu.edu/ soibel/Book-vol1.ps |
[30] | Kosmann-Schwarzbach Y., Magri F.: Poisson-Lie groups and complete integrability, I: drinfeld bialgebras, dual extensions and their canonical representations. Ann. Inst. H. Poincaré Phys. Théor. 49, 433-460 (1988) ·Zbl 0667.16005 |
[31] | Kupershmidt B.A.: What a classical r-matrix really is. J. Nonlinear Math. Phys. 6, 448-488 (1999) ·Zbl 1015.17015 ·doi:10.2991/jnmp.1999.6.4.5 |
[32] | Loday, J.-L.: Scindement d’associativté et algébres de Hopf. in the proceedings of conference in honor of Jean Leray, Nantes (2002), Séminaire et Congrés (SMF), 9, pp. 155-172 (2004) ·Zbl 1073.16032 |
[33] | Loday J.-L., Vallette B.: Algebraic Operads. Springer, Berlin (2012) ·Zbl 1260.18001 ·doi:10.1007/978-3-642-30362-3 |
[34] | Mazur B.: Perturbations, deformations, and variations (and “near-misses”) in geometry, physics, and number theory. Bull. AMS 41, 307-336 (2004) ·Zbl 1057.11033 ·doi:10.1090/S0273-0979-04-01024-9 |
[35] | Nijenhuis, A.: Sur une classe de proprits communes quelques types differents d’algebres. (French) Enseignement Math. (2). 14 1968 225-277 (1970) ·Zbl 0188.08101 |
[36] | Nijenhuis A., Richardson R.: Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 72, 1-29 (1966) ·Zbl 0136.30502 ·doi:10.1090/S0002-9904-1966-11401-5 |
[37] | Nijenhuis A., Richardson R.: Commutative algebra cohomology and deformations of Lie and associative algebras. J. Algebra 9, 42-105 (1968) ·Zbl 0175.31302 ·doi:10.1016/0021-8693(68)90004-5 |
[38] | Pei J., Bai C., Guo L.: Splitting of operads and Rota-Baxter operators on operads. Appl. Categor. Struct. 25, 505-538 (2017) ·Zbl 1423.18031 ·doi:10.1007/s10485-016-9431-5 |
[39] | Reshetikhin N.: Multiparameter quantum groups and twisted quasitriangular Hopf algebras. Lett. Math. Phys. 20, 331-335 (1990) ·Zbl 0719.17006 ·doi:10.1007/BF00626530 |
[40] | Rieffel M.A.: Deformation quantization of Heisenberg manifolds. Commun. Math. Phys. 122, 531-562 (1989) ·Zbl 0679.46055 ·doi:10.1007/BF01256492 |
[41] | Schomerus V.: D-branes and deformation quantization. J. High Energy Phys. 1999, 030 (1999) ·Zbl 0961.81066 ·doi:10.1088/1126-6708/1999/06/030 |
[42] | Semonov-Tian-Shansky M.A.: What is a classical R-matrix? Funct. Anal. Appl. 17, 259-272 (1983) ·Zbl 0535.58031 |
[43] | Uchino K.: Twisting on associative algebras and Rota-Baxter type operators. J. Noncommut. Geom. 4, 349-379 (2010) ·Zbl 1248.16027 ·doi:10.4171/JNCG/59 |
[44] | Voronov Th: Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 202, 133-153 (2005) ·Zbl 1086.17012 ·doi:10.1016/j.jpaa.2005.01.010 |
[45] | Wang, Q., Sheng, Y., Bai, C., Liu, J.: Nijenhuis operators on pre-Lie algebras. Commun. Contemp. Math. (2018). https://doi.org/10.1142/S0219199718500505 ·Zbl 1439.17023 |
[46] | Yang C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312-1315 (1967) ·Zbl 0152.46301 ·doi:10.1103/PhysRevLett.19.1312 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.