Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Constructing smooth and fully faithful tropicalizations for Mumford curves.(English)Zbl 1440.14283

Summary: The tropicalization of an algebraic variety \(X\) is a combinatorial shadow of \(X\), which is sensitive to a closed embedding of \(X\) into a toric variety. Given a good embedding, the tropicalization can provide a lot of information about \(X\). We construct two types of these good embeddings for Mumford curves: fully faithful tropicalizations, which are embeddings such that the tropicalization admits a continuous section to the associated Berkovich space \(X^{\text{an}}\) of \(X\), and smooth tropicalizations. We also show that a smooth curve that admits a smooth tropicalization is necessarily a Mumford curve. Our key tool is a variant of a lifting theorem for rational functions on metric graphs.

MSC:

14T25 Arithmetic aspects of tropical varieties
14G22 Rigid analytic geometry
32P05 Non-Archimedean analysis
14T15 Combinatorial aspects of tropical varieties
14T20 Geometric aspects of tropical varieties

Cite

References:

[1]Amini, O., Baker, M., Brugallé, E., Rabinoff, J.: Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta. Res. Math. Sci., 2:Art. 7, 67 (2015) ·Zbl 1327.14117
[2]An, Y., Baker, M., Kuperberg, G., Shokrieh, F.: Canonical representatives for divisor classes on tropical curves and the matrix-tree theorem. Forum Math. Sigma, 2:e24, 25 (2014) ·Zbl 1306.05013
[3]Berkovich, V.G.: Spectral theory and analytic geometry over non-Archimedean fields, volume 33 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1990) ·Zbl 0715.14013
[4]Bosch, S.; Lütkebohmert, W., Stable reduction and uniformization of abelian varieties. I, Math. Ann., 270, 3, 349-379 (1985) ·Zbl 0554.14012
[5]Baker, M., Payne, S., Rabinoff, J.: On the structure of non-Archimedean analytic curves. In Tropical and non-Archimedean geometry, volume 605 of Contemp. Math., pages 93-121. Amer. Math. Soc., Providence, RI (2013) ·Zbl 1320.14040
[6]Baker, M.; Payne, S.; Rabinoff, J., Nonarchimedean geometry, tropicalization, and metrics on curves, Algebr. Geom., 3, 1, 63-105 (2016) ·Zbl 1470.14124
[7]Baker, M.; Rabinoff, J., The skeleton of the Jacobian, the Jacobian of the skeleton, and lifting meromorphic functions from tropical to algebraic curves, Int. Math. Res. Not. IMRN, 16, 7436-7472 (2015) ·Zbl 1332.14038
[8]Cartwright, D.; Dudzik, A.; Manjunath, M.; Yao, Y., Embeddings and immersions of tropical curves, Collect. Math., 67, 1, 1-19 (2016) ·Zbl 1375.14212
[9]Cheung, M-W; Fantini, L.; Park, J.; Ulirsch, M., Faithful realizability of tropical curves, Int. Math. Res. Not. IMRN, 15, 4706-4727 (2016) ·Zbl 1404.14071
[10]Cueto, MA; Markwig, H., How to repair tropicalizations of plane curves using modifications, Exp. Math., 25, 2, 130-164 (2016) ·Zbl 1349.14196
[11]Chan, M., Sturmfels, B.: Elliptic curves in honeycomb form. In Algebraic and combinatorial aspects of tropical geometry, volume 589 of Contemp. Math., pages 87-107. Amer. Math. Soc., Providence, RI, (2013) ·Zbl 1312.14142
[12]Gunn, T., Jell, P.: C.onstruction of fully faithful tropicalizations for curves in ambient dimension 3. (2019). arxiv:1912.02648
[13]Gubler, W.; Rabinoff, J.; Werner, A., Skeletons and tropicalizations, Adv. Math., 294, 150-215 (2016) ·Zbl 1370.14024
[14]Gubler, W.; Rabinoff, J.; Werner, A., Tropical skeletons, Ann. Inst. Fourier (Grenoble), 67, 5, 1905-1961 (2017) ·Zbl 1439.14084
[15]Gubler, W.: A guide to tropicalizations. In Algebraic and combinatorial aspects of tropical geometry, volume 589 of Contemp. Math., pages 125-189. Amer. Math. Soc., Providence, RI, (2013) ·Zbl 1318.14061
[16]Hartshorne, R.: Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52 (1977) ·Zbl 0367.14001
[17]Itenberg, I.; Katzarkov, L.; Mikhalkin, G.; Zharkov, I., Tropical homology, Math. Ann., 374, 1-2, 963-1006 (2019) ·Zbl 1460.14146
[18]Jell, P., Rau, J., Shaw, K.: Lefschetz (1,1)-theorem in tropical geometry. Épijournal Geom. Algébrique, 2:Art. 11 (2018) ·Zbl 1420.14143
[19]Jell, P.; Shaw, K.; Smacka, J., Superforms, tropical cohomology, and Poincaré duality, Adv. Geom., 19, 1, 101-130 (2019) ·Zbl 1440.14277
[20]Jell, P.; Wanner, V., Poincaré duality for the tropical Dolbeault cohomology of non-archimedean Mumford curves, J. Number Theory, 187, 344-371 (2018) ·Zbl 1398.32031
[21]Katz, E.; Markwig, H.; Markwig, T., The \(j\)-invariant of a plane tropical cubic, J. Algebra, 320, 10, 3832-3848 (2008) ·Zbl 1185.14030
[22]Katz, E.; Markwig, H.; Markwig, T., The tropical \(j\)-invariant, LMS J. Comput. Math., 12, 275-294 (2009) ·Zbl 1230.14096
[23]Katz, E., Payne, S.: Realization spaces for tropical fans. In Combinatorial aspects of commutative algebra and algebraic geometry, volume 6 of Abel Symp., pages 73-88. Springer, Berlin (2011) ·Zbl 1248.14066
[24]Kawaguchi, S., Yamaki, K.: Effective faithful tropicalizations associated to linear systems on curves. 2016. arxiv:1612.01098, to appear in Memoirs of the American Mathematical Society (2016)
[25]Manjunath, M.: Tropical graph curves. (2016). arxiv:1603.08870.pdf
[26]Mikhalkin, G., What are tropical counterparts of algebraic varieties?, Oberwolfach Reports, 5, 2, 1460-1462 (2008)
[27]Maclagan, D., Sturmfels, B.: Introduction to tropical geometry. Book in progress, draft available at http://homepages.warwick.ac.uk/staff/D.Maclagan/papers/papers.html ·Zbl 1321.14048
[28]Maclagan, D., Sturmfels, B.: Introduction to tropical geometry, volume 161 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2015) ·Zbl 1321.14048
[29]Mikhalkin, G., Zharkov, I.: Tropical curves, their Jacobians and theta functions. In Curves and abelian varieties, volume 465 of Contemp. Math., pages 203-230. Amer. Math. Soc., Providence, RI (2008) ·Zbl 1152.14028
[30]Payne, S., Analytification is the limit of all tropicalizations, Math. Res. Lett., 16, 3, 543-556 (2009) ·Zbl 1193.14077
[31]Shaw, K., A tropical intersection product in matroidal fans, SIAM J. Discrete Math., 27, 1, 459-491 (2013) ·Zbl 1314.14113
[32]Thuillier, A.: Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov. (2005). https://tel.archives-ouvertes.fr/file/index/docid/48750/filename/tel-00010990.pdf
[33]Wagner, T., Faithful tropicalization of Mumford curves of genus two, Beitr. Algebra Geom., 58, 1, 47-67 (2017) ·Zbl 1401.14243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp