14A20 | Generalizations (algebraic spaces, stacks) |
53D17 | Poisson manifolds; Poisson groupoids and algebroids |
53D55 | Deformation quantization, star products |
[1] | Baranovsky, V; Ginzburg, V, Gerstenhaber-Batalin-vilkoviski structures on coisotropic intersections, Math. Res. Lett., 17, 211-229, (2010) ·Zbl 1220.14008 ·doi:10.4310/MRL.2010.v17.n2.a2 |
[2] | Baranovsky, V; Ginzburg, V; Kaledin, D; Pecharich, J, Quantization of line bundles on Lagrangian subvarieties, Sel. Math., 22, 1-25, (2016) ·Zbl 1333.53127 ·doi:10.1007/s00029-015-0181-2 |
[3] | Cattaneo, A; Felder, G, Relative formality theorem and quantisation of coisotropic submanifolds, Adv. Math., 208, 521-548, (2007) ·Zbl 1106.53060 ·doi:10.1016/j.aim.2006.03.010 |
[4] | Costello, K., Gwilliam, O.: Factorization algebras in quantum field theory, vol. 2 (2016). http://people.mpim-bonn.mpg.de/gwilliam/vol2may8.pdf ·Zbl 1377.81004 |
[5] | Calaque, D; Pantev, T; Toën, B; Vaquié, M; Vezzosi, G, Shifted Poisson structures and deformation quantization, J. Topol., 10, 483-584, (2017) ·Zbl 1428.14006 ·doi:10.1112/topo.12012 |
[6] | Fresse, B., Turchin, V., Willwacher, T.: The rational homotopy of mapping spaces of \(E_n\) operads. arXiv:1703.06123 ·Zbl 1405.18015 |
[7] | Fresse, B., Willwacher, T.: The intrinsic formality of \(E_n\)-operads. arXiv:1503.08699 ·Zbl 0642.58025 |
[8] | Haugseng, R, The higher Morita category of \(E_n\)-algebras, Geom. Topol., 21, 1631-1730, (2017) ·Zbl 1395.18011 ·doi:10.2140/gt.2017.21.1631 |
[9] | Joyce, D., Safronov, P.: A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes, to appear in Annales Math. de la Faculté des Sciences de Toulouse. arXiv:1506.04024 ·Zbl 1048.18007 |
[10] | Kontsevich, M, Operads and motives in deformation quantization, Lett. Math. Phys., 48, 35-72, (1999) ·Zbl 0945.18008 ·doi:10.1023/A:1007555725247 |
[11] | Livernet, M, Non-formality of the swiss-cheese operad, J. Topol., 8, 1156-1166, (2015) ·Zbl 1333.55009 ·doi:10.1112/jtopol/jtv018 |
[12] | Lambrechts, P., Volić, I.: Formality of the little \(N\)-disks operad. Mem. Am. Math. Soc.230 (2014) viii+116. arXiv:0808.0457 ·Zbl 1308.55006 |
[13] | Lurie, J.: Higher algebra. http://math.harvard.edu/ lurie/papers/HA.pdf ·Zbl 1175.18001 |
[14] | Melani, V, Poisson bivectors and Poisson brackets on affine derived stacks, Adv. Math., 288, 1097-1120, (2016) ·Zbl 1375.14010 ·doi:10.1016/j.aim.2015.11.008 |
[15] | Melani, V., Safronov, P.: Derived coisotropic structures I: affine case. Sel. Math. (to appear). arXiv:1608.01482 ·Zbl 1461.14006 |
[16] | Oh, Y-G; Park, J-S, Deformations of coisotropic submanifolds and strong homotopy Lie algebroids, Invent. Math., 161, 287-306, (2005) ·Zbl 1081.53066 ·doi:10.1007/s00222-004-0426-8 |
[17] | Pridham, J, Shifted Poisson and symplectic structures on derived \(N\)-stacks, J. Topol., 10, 178-210, (2017) ·Zbl 1401.14017 ·doi:10.1112/topo.12004 |
[18] | Pridham, J.: Deformation quantisation for \((-1)\)-shifted symplectic structures and vanishing cycles. arXiv:1508.07936 |
[19] | Pridham, J.: Deformation quantisation for unshifted symplectic structures on derived Artin stacks. arXiv:1604.04458 ·Zbl 1423.14018 |
[20] | Pridham, J.: Quantisation of derived Lagrangians. arXiv:1607.01000 ·Zbl 1143.32012 |
[21] | Pantev, T; Toën, B; Vaquié, M; Vezzosi, G, Shifted symplectic structures, Publ. Math. IHES, 117, 271-328, (2013) ·Zbl 1328.14027 ·doi:10.1007/s10240-013-0054-1 |
[22] | Safronov, P, Poisson reduction as a coisotropic intersection, High. Struct., 1, 87-121, (2017) ·Zbl 1429.17024 |
[23] | Safronov, P.: Braces and Poisson additivity. arXiv:1611.09668 ·Zbl 1400.18013 |
[24] | Safronov, P.: Poisson-Lie structures as shifted Poisson structures. arXiv:1706.02623 |
[25] | Scheimbauer, C.: Factorization homology as a fully extended topological field theory. Ph.D. Thesis. https://people.maths.ox.ac.uk/scheimbauer/ScheimbauerThesis.pdf |
[26] | Tamarkin, D, Formality of chain operad of little discs, Lett. Math. Phys., 66, 65-72, (2003) ·Zbl 1048.18007 ·doi:10.1023/B:MATH.0000017651.12703.a1 |
[27] | Toën, B; Vezzosi, G, Homotopical algebraic geometry I: topos theory, Adv. Math., 193, 257-372, (2005) ·Zbl 1120.14012 ·doi:10.1016/j.aim.2004.05.004 |
[28] | Weinstein, A, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Jpn., 40, 705-727, (1988) ·Zbl 0642.58025 ·doi:10.2969/jmsj/04040705 |