Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Derived coisotropic structures. II: Stacks and quantization.(English)Zbl 1440.14004

Summary: We extend results about \(n\)-shifted coisotropic structures from Part I [ibid. 24, No. 4, 3061–3118 (2018;Zbl 1461.14006)] of our work to the setting of derived Artin stacks. We show that an intersection of coisotropic morphisms carries a Poisson structure of shift one less. We also compare non-degenerate shifted coisotropic structures and shifted Lagrangian structures and show that there is a natural equivalence between the two spaces in agreement with the classical result. Finally, we define quantizations of \(n\)-shifted coisotropic structures and show that they exist for \(n>1\).

MSC:

14A20 Generalizations (algebraic spaces, stacks)
53D17 Poisson manifolds; Poisson groupoids and algebroids
53D55 Deformation quantization, star products

Citations:

Zbl 1461.14006

Cite

References:

[1]Baranovsky, V; Ginzburg, V, Gerstenhaber-Batalin-vilkoviski structures on coisotropic intersections, Math. Res. Lett., 17, 211-229, (2010) ·Zbl 1220.14008 ·doi:10.4310/MRL.2010.v17.n2.a2
[2]Baranovsky, V; Ginzburg, V; Kaledin, D; Pecharich, J, Quantization of line bundles on Lagrangian subvarieties, Sel. Math., 22, 1-25, (2016) ·Zbl 1333.53127 ·doi:10.1007/s00029-015-0181-2
[3]Cattaneo, A; Felder, G, Relative formality theorem and quantisation of coisotropic submanifolds, Adv. Math., 208, 521-548, (2007) ·Zbl 1106.53060 ·doi:10.1016/j.aim.2006.03.010
[4]Costello, K., Gwilliam, O.: Factorization algebras in quantum field theory, vol. 2 (2016). http://people.mpim-bonn.mpg.de/gwilliam/vol2may8.pdf ·Zbl 1377.81004
[5]Calaque, D; Pantev, T; Toën, B; Vaquié, M; Vezzosi, G, Shifted Poisson structures and deformation quantization, J. Topol., 10, 483-584, (2017) ·Zbl 1428.14006 ·doi:10.1112/topo.12012
[6]Fresse, B., Turchin, V., Willwacher, T.: The rational homotopy of mapping spaces of \(E_n\) operads. arXiv:1703.06123 ·Zbl 1405.18015
[7]Fresse, B., Willwacher, T.: The intrinsic formality of \(E_n\)-operads. arXiv:1503.08699 ·Zbl 0642.58025
[8]Haugseng, R, The higher Morita category of \(E_n\)-algebras, Geom. Topol., 21, 1631-1730, (2017) ·Zbl 1395.18011 ·doi:10.2140/gt.2017.21.1631
[9]Joyce, D., Safronov, P.: A Lagrangian Neighbourhood Theorem for shifted symplectic derived schemes, to appear in Annales Math. de la Faculté des Sciences de Toulouse. arXiv:1506.04024 ·Zbl 1048.18007
[10]Kontsevich, M, Operads and motives in deformation quantization, Lett. Math. Phys., 48, 35-72, (1999) ·Zbl 0945.18008 ·doi:10.1023/A:1007555725247
[11]Livernet, M, Non-formality of the swiss-cheese operad, J. Topol., 8, 1156-1166, (2015) ·Zbl 1333.55009 ·doi:10.1112/jtopol/jtv018
[12]Lambrechts, P., Volić, I.: Formality of the little \(N\)-disks operad. Mem. Am. Math. Soc.230 (2014) viii+116. arXiv:0808.0457 ·Zbl 1308.55006
[13]Lurie, J.: Higher algebra. http://math.harvard.edu/ lurie/papers/HA.pdf ·Zbl 1175.18001
[14]Melani, V, Poisson bivectors and Poisson brackets on affine derived stacks, Adv. Math., 288, 1097-1120, (2016) ·Zbl 1375.14010 ·doi:10.1016/j.aim.2015.11.008
[15]Melani, V., Safronov, P.: Derived coisotropic structures I: affine case. Sel. Math. (to appear). arXiv:1608.01482 ·Zbl 1461.14006
[16]Oh, Y-G; Park, J-S, Deformations of coisotropic submanifolds and strong homotopy Lie algebroids, Invent. Math., 161, 287-306, (2005) ·Zbl 1081.53066 ·doi:10.1007/s00222-004-0426-8
[17]Pridham, J, Shifted Poisson and symplectic structures on derived \(N\)-stacks, J. Topol., 10, 178-210, (2017) ·Zbl 1401.14017 ·doi:10.1112/topo.12004
[18]Pridham, J.: Deformation quantisation for \((-1)\)-shifted symplectic structures and vanishing cycles. arXiv:1508.07936
[19]Pridham, J.: Deformation quantisation for unshifted symplectic structures on derived Artin stacks. arXiv:1604.04458 ·Zbl 1423.14018
[20]Pridham, J.: Quantisation of derived Lagrangians. arXiv:1607.01000 ·Zbl 1143.32012
[21]Pantev, T; Toën, B; Vaquié, M; Vezzosi, G, Shifted symplectic structures, Publ. Math. IHES, 117, 271-328, (2013) ·Zbl 1328.14027 ·doi:10.1007/s10240-013-0054-1
[22]Safronov, P, Poisson reduction as a coisotropic intersection, High. Struct., 1, 87-121, (2017) ·Zbl 1429.17024
[23]Safronov, P.: Braces and Poisson additivity. arXiv:1611.09668 ·Zbl 1400.18013
[24]Safronov, P.: Poisson-Lie structures as shifted Poisson structures. arXiv:1706.02623
[25]Scheimbauer, C.: Factorization homology as a fully extended topological field theory. Ph.D. Thesis. https://people.maths.ox.ac.uk/scheimbauer/ScheimbauerThesis.pdf
[26]Tamarkin, D, Formality of chain operad of little discs, Lett. Math. Phys., 66, 65-72, (2003) ·Zbl 1048.18007 ·doi:10.1023/B:MATH.0000017651.12703.a1
[27]Toën, B; Vezzosi, G, Homotopical algebraic geometry I: topos theory, Adv. Math., 193, 257-372, (2005) ·Zbl 1120.14012 ·doi:10.1016/j.aim.2004.05.004
[28]Weinstein, A, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Jpn., 40, 705-727, (1988) ·Zbl 0642.58025 ·doi:10.2969/jmsj/04040705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp