26D10 | Inequalities involving derivatives and differential and integral operators |
46E35 | Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems |
58E35 | Variational inequalities (global problems) in infinite-dimensional spaces |
[1] | A. Arnold and J. Dolbeault, Refined convex Sobolev inequalities, J. Funct. Anal. 225 (2005), no. 2, 337-351. ·Zbl 1087.35018 |
[2] | D. Bakry and M. Émery, Diffusions hypercontractives, Séminaire de Probabilités. XIX. 1983/84, Lecture Notes in Math. 1123, Springer, Berlin (1985), 177-206. ·Zbl 0561.60080 |
[3] | D. Bakry and M. Émery, Inégalités de Sobolev pour un semi-groupe symétrique, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 8, 411-413. ·Zbl 0579.60079 |
[4] | D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Grundlehren Math. Wiss. 348, Springer, Cham, 2014. ·Zbl 1376.60002 |
[5] | W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math. (2) 138 (1993), no. 1, 213-242. ·Zbl 0826.58042 |
[6] | G. Bianchi and H. Egnell, A note on the Sobolev inequality, J. Funct. Anal. 100 (1991), no. 1, 18-24. ·Zbl 0755.46014 |
[7] | M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), no. 3, 489-539. ·Zbl 0755.35036 |
[8] | M. J. Cáceres, J. A. Carrillo and J. Dolbeault, Nonlinear stability in L^p for a confined system of charged particles, SIAM J. Math. Anal. 34 (2002), no. 2, 478-494. ·Zbl 1015.35015 |
[9] | J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature, J. Funct. Anal. 254 (2008), no. 3, 593-611. ·Zbl 1133.58012 |
[10] | J. Dolbeault, M. J. Esteban, M. Kowalczyk and M. Loss, Sharp interpolation inequalities on the sphere: new methods and consequences, Chin. Ann. Math. Ser. B 34 (2013), no. 1, 99-112. ·Zbl 1263.26029 |
[11] | J. Dolbeault, M. J. Esteban, M. Kowalczyk and M. Loss, Improved interpolation inequalities on the sphere, Discrete Contin. Dyn. Syst. Ser. S 7 (2014), no. 4, 695-724. ·Zbl 1290.26022 |
[12] | J. Dolbeault, M. J. Esteban and A. Laptev, Spectral estimates on the sphere, Anal. PDE 7 (2014), 435-460. ·Zbl 1293.35183 |
[13] | J. Dolbeault, M. J. Esteban, A. Laptev and M. Loss, Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates, C. R. Math. Acad. Sci. Paris 351 (2013), no. 11-12, 437-440. ·Zbl 1276.58007 |
[14] | J. Dolbeault, M. J. Esteban and M. Loss, Nonlinear flows and rigidity results on compact manifolds, J. Funct. Anal. 267 (2014), no. 5, 1338-1363. ·Zbl 1294.58005 |
[15] | J. Dolbeault, M. J. Esteban and M. Loss, Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization, J. Elliptic Parabol. Equ. 2 (2016), no. 1-2, 267-295. ·Zbl 1386.35174 |
[16] | J. Dolbeault, M. J. Esteban and M. Loss, Interpolation inequalities on the sphere: Linear vs. nonlinear flows, Ann. Fac. Sci. Toulouse Math. (6) 26 (2017), no. 2, 351-379. ·Zbl 1372.58017 |
[17] | J. Dolbeault, M. J. Esteban, M. Loss and M. Muratori, Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities, C. R. Math. Acad. Sci. Paris 355 (2017), no. 2, 133-154. ·Zbl 1379.49009 |
[18] | J. Dolbeault and X. Li, φ-entropies: Convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations, Math. Models Methods Appl. Sci. 28 (2018), no. 13, 2637-2666. ·Zbl 1411.82032 |
[19] | J. Dolbeault and G. Toscani, Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities, Int. Math. Res. Not. IMRN 2016 (2016), no. 2, 473-498. ·Zbl 1355.46038 |
[20] | C. E. Mueller and F. B. Weissler, Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere, J. Funct. Anal. 48 (1982), no. 2, 252-283. ·Zbl 0506.46022 |
[21] | A. Unterreiter, A. Arnold, P. Markowich and G. Toscani, On generalized Csiszár-Kullback inequalities, Monatsh. Math. 131 (2000), no. 3, 235-253. ·Zbl 1015.94003 |