[1] | Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect. Notes in Math., vol. 470 (1975) ·Zbl 0308.28010 |
[2] | Cover, T. M.; Thomas, J. A., Elements of Information Theory (2006), Wiley: Wiley New York ·Zbl 1140.94001 |
[3] | Dinaburg, E. I., A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR, 190, 19-22 (1970) ·Zbl 0196.26401 |
[4] | Effros, M.; Chou, P. A.; Gray, G. M., Variable-rate source coding theorems for stationary nonergodic sources, IEEE Trans. Inform. Theory, 40, 1920-1925 (1994) ·Zbl 0826.94012 |
[5] | Goodman, T. N.T., Relating topological entropy and measure entropy, Bull. Lond. Math. Soc., 3, 176-180 (1971) ·Zbl 0219.54037 |
[6] | Goodwyn, L. W., Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc., 23, 679-688 (1969) ·Zbl 0186.09804 |
[7] | Gray, R. M., Entropy and Information Theory (1990), Springer-Verlag: Springer-Verlag New York ·Zbl 0722.94001 |
[8] | Gromov, M., Topological invariants of dynamical systems and spaces of holomorphic maps: I, Math. Phys. Anal. Geom., 2, 323-415 (1999) ·Zbl 1160.37322 |
[9] | Gutman, Y., Mean dimension and Jaworski-type theorems, Proc. Lond. Math. Soc., 111, 4, 831-850 (2015) ·Zbl 1352.37017 |
[10] | Gutman, Y., Embedding topological dynamical systems with periodic points in cubical shifts, Ergodic Theory Dynam. Systems, 37, 512-538 (2017) ·Zbl 1435.37034 |
[11] | Gutman, Y.; Lindenstrauss, E.; Tsukamoto, M., Mean dimension of \(\mathbb{Z}^k\)-actions, Geom. Funct. Anal., 26, 3, 778-817 (2016) ·Zbl 1378.37056 |
[12] | Gutman, Y.; Śpiewak, A., Metric mean dimension and analog compression ·Zbl 1453.94043 |
[13] | Gutman, Y.; Qiao, Y.; Tsukamoto, M., Application of signal analysis to the embedding problem of \(\mathbb{Z}^k\)-actions, Geom. Funct. Anal., 29, 1440-1502 (2019) ·Zbl 1427.37013 |
[14] | Gutman, Y.; Tsukamoto, M., Embedding minimal dynamical systems into Hilbert cubes, preprint ·Zbl 1444.37010 |
[15] | Howroyd, J. D., On dimension and on the existence of sets of finite, positive Hausdorff measures, Proc. Lond. Math. Soc., 70, 581-604 (1995) ·Zbl 0828.28002 |
[16] | Kawabata, T.; Dembo, A., The rate distortion dimension of sets and measures, IEEE Trans. Inform. Theory, 40, 5, 1564-1572 (Sep. 1994) ·Zbl 0819.94018 |
[17] | Leon-Garcia, A.; Davisson, L. D.; Neuhoff, D. L., New results on coding of stationary nonergodic sources, IEEE Trans. Inform. Theory, 25, 137-144 (1979) ·Zbl 0406.94007 |
[18] | Li, H.; Liang, B., Mean dimension, mean rank and von Neumann-Lück rank, J. Reine Angew. Math., 739, 207-240 (2018) ·Zbl 1392.37018 |
[19] | Lindenstrauss, E., Mean dimension, small entropy factors and an embedding theorem, Publ. Math. Inst. Hautes Études Sci., 89, 227-262 (1999) ·Zbl 0978.54027 |
[20] | Lindenstrauss, E.; Tsukamoto, M., From rate distortion theory to metric mean dimension: variational principle, IEEE Trans. Inform. Theory, 64, 5, 3590-3609 (May 2018) ·Zbl 1395.94215 |
[21] | Lindenstrauss, E.; Tsukamoto, M., Double variational principle for mean dimension, Geom. Funct. Anal., 29, 1048-1109 (2019) ·Zbl 1433.37025 |
[22] | Lindenstrauss, E.; Weiss, B., Mean topological dimension, Israel J. Math., 115, 1-24 (2000) ·Zbl 0978.54026 |
[23] | Matsuo, S.; Tsukamoto, M., Brody curves and mean dimension, J. Amer. Math. Soc., 28, 159-182 (2015) ·Zbl 1307.32013 |
[24] | Meyerovitch, T.; Tsukamoto, M., Expansive multiparameter actions and mean dimension, Trans. Amer. Math. Soc., 371, 7275-7299 (2019) ·Zbl 1419.37023 |
[25] | Misiurewicz, M., A short proof of the variational principle for \(\mathbb{Z}_+^N\) actions on a compact space, (International Conference on Dynamical Systems in Mathematical Physics. International Conference on Dynamical Systems in Mathematical Physics, Rennes, 1975. International Conference on Dynamical Systems in Mathematical Physics. International Conference on Dynamical Systems in Mathematical Physics, Rennes, 1975, Astérisque, vol. 40 (1976), Soc. Math. France: Soc. Math. France Paris), 145-157 ·Zbl 0368.54013 |
[26] | Pontrjagin, L.; Schnirelmann, L., Sur une propriété métrique de la dimension, Ann. of Math., 33, 152-162 (1932) ·JFM 58.0627.01 |
[27] | Shannon, C. E., A mathematical theory of communication, Bell Syst. Tech. J., 27, 379-423 (1948), 623-656 ·Zbl 1154.94303 |
[28] | Shannon, C. E., Coding theorems for a discrete source with a fidelity criterion, IRE Nat. Conv. Rec., Pt., 4, 142-163 (1959) |
[29] | Tsukamoto, M., Mean dimension of the dynamical system of Brody curves, Invent. Math., 211, 935-968 (2018) ·Zbl 1405.32017 |
[30] | Velozo, A.; Velozo, R., Rate distortion theory, metric mean dimension and measure theoretic entropy |
[31] | Villani, C., Optimal Transport Old and New (2009), Springer-Verlag: Springer-Verlag Berlin ·Zbl 1156.53003 |
[32] | Walter, P., A variational principle for the pressure of continuous transformations, Amer. J. Math., 17, 937-971 (1975) ·Zbl 0318.28007 |
[33] | Walter, P., An Introduction to Ergodic Theory (1982), Springer-Verlag: Springer-Verlag New York ·Zbl 0475.28009 |