Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Double variational principle for mean dimension with potential.(English)Zbl 1436.37032

Summary: This paper contributes to the mean dimension theory of dynamical systems. We introduce a new concept called mean dimension with potential and develop a variational principle for it. This is a mean dimension analogue of the theory of topological pressure. We consider a minimax problem for the sum of rate distortion dimension and the integral of a potential function. We prove that the minimax value is equal to the mean dimension with potential for a dynamical system having the marker property. The basic idea of the proof is a dynamicalization of geometric measure theory.

MSC:

37C45 Dimension theory of smooth dynamical systems
37B40 Topological entropy
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37A05 Dynamical aspects of measure-preserving transformations

Cite

References:

[1]Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect. Notes in Math., vol. 470 (1975) ·Zbl 0308.28010
[2]Cover, T. M.; Thomas, J. A., Elements of Information Theory (2006), Wiley: Wiley New York ·Zbl 1140.94001
[3]Dinaburg, E. I., A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR, 190, 19-22 (1970) ·Zbl 0196.26401
[4]Effros, M.; Chou, P. A.; Gray, G. M., Variable-rate source coding theorems for stationary nonergodic sources, IEEE Trans. Inform. Theory, 40, 1920-1925 (1994) ·Zbl 0826.94012
[5]Goodman, T. N.T., Relating topological entropy and measure entropy, Bull. Lond. Math. Soc., 3, 176-180 (1971) ·Zbl 0219.54037
[6]Goodwyn, L. W., Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc., 23, 679-688 (1969) ·Zbl 0186.09804
[7]Gray, R. M., Entropy and Information Theory (1990), Springer-Verlag: Springer-Verlag New York ·Zbl 0722.94001
[8]Gromov, M., Topological invariants of dynamical systems and spaces of holomorphic maps: I, Math. Phys. Anal. Geom., 2, 323-415 (1999) ·Zbl 1160.37322
[9]Gutman, Y., Mean dimension and Jaworski-type theorems, Proc. Lond. Math. Soc., 111, 4, 831-850 (2015) ·Zbl 1352.37017
[10]Gutman, Y., Embedding topological dynamical systems with periodic points in cubical shifts, Ergodic Theory Dynam. Systems, 37, 512-538 (2017) ·Zbl 1435.37034
[11]Gutman, Y.; Lindenstrauss, E.; Tsukamoto, M., Mean dimension of \(\mathbb{Z}^k\)-actions, Geom. Funct. Anal., 26, 3, 778-817 (2016) ·Zbl 1378.37056
[12]Gutman, Y.; Śpiewak, A., Metric mean dimension and analog compression ·Zbl 1453.94043
[13]Gutman, Y.; Qiao, Y.; Tsukamoto, M., Application of signal analysis to the embedding problem of \(\mathbb{Z}^k\)-actions, Geom. Funct. Anal., 29, 1440-1502 (2019) ·Zbl 1427.37013
[14]Gutman, Y.; Tsukamoto, M., Embedding minimal dynamical systems into Hilbert cubes, preprint ·Zbl 1444.37010
[15]Howroyd, J. D., On dimension and on the existence of sets of finite, positive Hausdorff measures, Proc. Lond. Math. Soc., 70, 581-604 (1995) ·Zbl 0828.28002
[16]Kawabata, T.; Dembo, A., The rate distortion dimension of sets and measures, IEEE Trans. Inform. Theory, 40, 5, 1564-1572 (Sep. 1994) ·Zbl 0819.94018
[17]Leon-Garcia, A.; Davisson, L. D.; Neuhoff, D. L., New results on coding of stationary nonergodic sources, IEEE Trans. Inform. Theory, 25, 137-144 (1979) ·Zbl 0406.94007
[18]Li, H.; Liang, B., Mean dimension, mean rank and von Neumann-Lück rank, J. Reine Angew. Math., 739, 207-240 (2018) ·Zbl 1392.37018
[19]Lindenstrauss, E., Mean dimension, small entropy factors and an embedding theorem, Publ. Math. Inst. Hautes Études Sci., 89, 227-262 (1999) ·Zbl 0978.54027
[20]Lindenstrauss, E.; Tsukamoto, M., From rate distortion theory to metric mean dimension: variational principle, IEEE Trans. Inform. Theory, 64, 5, 3590-3609 (May 2018) ·Zbl 1395.94215
[21]Lindenstrauss, E.; Tsukamoto, M., Double variational principle for mean dimension, Geom. Funct. Anal., 29, 1048-1109 (2019) ·Zbl 1433.37025
[22]Lindenstrauss, E.; Weiss, B., Mean topological dimension, Israel J. Math., 115, 1-24 (2000) ·Zbl 0978.54026
[23]Matsuo, S.; Tsukamoto, M., Brody curves and mean dimension, J. Amer. Math. Soc., 28, 159-182 (2015) ·Zbl 1307.32013
[24]Meyerovitch, T.; Tsukamoto, M., Expansive multiparameter actions and mean dimension, Trans. Amer. Math. Soc., 371, 7275-7299 (2019) ·Zbl 1419.37023
[25]Misiurewicz, M., A short proof of the variational principle for \(\mathbb{Z}_+^N\) actions on a compact space, (International Conference on Dynamical Systems in Mathematical Physics. International Conference on Dynamical Systems in Mathematical Physics, Rennes, 1975. International Conference on Dynamical Systems in Mathematical Physics. International Conference on Dynamical Systems in Mathematical Physics, Rennes, 1975, Astérisque, vol. 40 (1976), Soc. Math. France: Soc. Math. France Paris), 145-157 ·Zbl 0368.54013
[26]Pontrjagin, L.; Schnirelmann, L., Sur une propriété métrique de la dimension, Ann. of Math., 33, 152-162 (1932) ·JFM 58.0627.01
[27]Shannon, C. E., A mathematical theory of communication, Bell Syst. Tech. J., 27, 379-423 (1948), 623-656 ·Zbl 1154.94303
[28]Shannon, C. E., Coding theorems for a discrete source with a fidelity criterion, IRE Nat. Conv. Rec., Pt., 4, 142-163 (1959)
[29]Tsukamoto, M., Mean dimension of the dynamical system of Brody curves, Invent. Math., 211, 935-968 (2018) ·Zbl 1405.32017
[30]Velozo, A.; Velozo, R., Rate distortion theory, metric mean dimension and measure theoretic entropy
[31]Villani, C., Optimal Transport Old and New (2009), Springer-Verlag: Springer-Verlag Berlin ·Zbl 1156.53003
[32]Walter, P., A variational principle for the pressure of continuous transformations, Amer. J. Math., 17, 937-971 (1975) ·Zbl 0318.28007
[33]Walter, P., An Introduction to Ergodic Theory (1982), Springer-Verlag: Springer-Verlag New York ·Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp