Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Refined global Gan-Gross-Prasad conjecture for Fourier-Jacobi periods on symplectic groups.(English)Zbl 1436.11055

The global Gan-Gross-Prasad (GGP) conjecture [W. T. Gan et al., Astérisque 346, 1–109 (2012;Zbl 1280.22019)] relates the non-vanishing of certain global period integrals of automorphic forms to the non-vanishing of central values of \(L\)-functions of Rankin-Selberg type. The conjecture is also expected to have a refined form, which gives a precise formula between the global periods and central \(L\)-values. Such formulae, asJ. L. Waldspurger’s formula [Compos. Math. 54, 173–242 (1985;Zbl 0567.10021)] for instance, could have various applications in the study of arithmetic problems.
For the cases of Bessel periods, the refined conjecture has been formulated byA. Ichino andT. Ikeda [Geom. Funct. Anal. 19, No. 5, 1378–1425 (2010;Zbl 1216.11057)] for the pair \((\mathrm{SO}_n,\mathrm{SO}_{n+1})\), byN. Harris [Int. Math. Res. Not. 2014, No. 2, 303–389 (2014;Zbl 1322.11047)] for the pair \((\mathrm{U}_n, \mathrm{U}_{n+1})\), and byY. Liu [J. Reine Angew. Math. 717, 133–194 (2016;Zbl 1404.11065)] for general Bessel periods for classical groups. The refined conjecture for Fourier-Jacobi periods was only considered for the pair \((\mathrm{U}_n, \mathrm{U}_n)\) before by the author of this paper [Adv. Math., 262, 1130–1191 (2014;Zbl 1301.11051)].
In the first part of this paper, the author propose a conjectural formula for Fourier-Jacobi periods in symplectic-metaplectic cases. Let \(F\) be a number field with ring of adeles \(\mathbb{A}\), and \(\psi: F\backslash \mathbb{A}\longrightarrow \mathbb{C}^\times\) be a fixed non-trivial additive character. For two symplectic spaces \(W\supset W_0\) of codimension \(2r\) over \(F\), denote \(G=\mathrm{Sp}(W)\), \(G_0=\mathrm{Sp}(W_0)\), and \(\widetilde G_0=\mathrm{Mp}(W_0)\), the metaplectic double cover of \(\mathrm{Sp}(W_0)\). Let \(\pi\) be an irreducible cuspidal tempered automorphic representation of \(G(\mathbb{A})\), and \(\pi_0\) be an irreducible cuspidal tempered genuine automorphic representation of \(\widetilde G_0(\mathbb{A})\). For automorphic forms \(\varphi\in \pi\) and \(\varphi_0\in \pi_0\), one defines the Fourier-Jacobi period\[\mathcal{FJ}_{\psi}(\varphi,\varphi_0, \phi)=\int_{[G_0]}\int_{[\mathcal{H}_{W_0}]}\int_{[N_{r-1}]}\varphi_0(g_0)\varphi(uhg_0)\overline{\psi_{r-1}(u)\theta_\psi^\phi(h\cdot g_0)}\,du\,dh\,dg_0,\]where \(\mathcal{H}_{W_0}=W_0\ltimes F\) is the Heisenberg group attached to \(W_0\); \(\theta_\psi^\phi\) is a theta series on \(\mathcal{H}_{W_0}(\mathbb{A})\rtimes \widetilde G_0(\mathbb{A})\) with respect to \(\psi\) with \(\phi\in \mathcal{S}(\mathbb{A}^n)\) being a Schwartz function; \(N_{r-1}\) is the unipotent radical of the parabolic subgroup \(P_{r-1}\) in \(G\) whose Levi subgroup is isomorphic to \(\mathrm{GL}_1^{r-1}\times\mathrm{Sp}(W_0+\mathbb{H})\) (here \(\mathbb{H}\) is a hyperbolic plane over \(F\)), and \(\psi_{r-1}\) is an automorphic character on \(N_{r-1}(\mathbb{A})\) which is stable under the conjugation action of \(\mathcal{H}_{W_0}(\mathbb{A})\rtimes G_0(\mathbb{A})\) (here \(\mathcal{H}_{W_0}\) embeds into \(N_{r-1}\) as a unipotent subgroup). The convergence of \(\mathcal{FJ}_{\psi}(\varphi,\varphi_0, \phi)\) is guaranteed by the cuspidality of \(\pi\) and \(\pi_0\).
On the other hand, one can define the (partial) Rankin-Selberg \(L\)-function \(L_\psi^S(s,\pi\times \pi_0)\) for a sufficient large finite set of places \(S\), which depends on the additive character \(\psi\). Suppose that \(\varphi=\otimes_v \varphi_v\) and \(\varphi_0=\otimes_v \varphi_{0,v}\) are decomposable, the author proposed the conjectural formula:\[|\mathcal{FJ}_{\psi}(\varphi,\varphi_0, \phi)|^2=\frac{\Delta_G^S}{|S_{\pi}|\cdot |S_{\pi_0}|}\frac{L^S_\psi(\frac{1}{2},\pi\times \pi_0)}{L^S(1,\pi,\mathrm{Ad})L_\psi^S(1,\pi_0,\mathrm{Ad})}\cdot \prod_{v\in S} \alpha_v(\varphi_v, \varphi_{0,v},\phi_v),\]where \(\Delta_G^S=\prod_{i=1}^{n+r} \zeta_F^S(2i)\) with \(n=\frac{\dim W_0}{2}\); \(S_\pi\) and \(S_{\pi_0}\) are centralizers of global \(L\)-parameters of \(\pi\) and \(\pi_0\), respectively; \(L^S(1,\pi,\mathrm{Ad})\) and \(L_\psi^S(1,\pi_0,\mathrm{Ad})\) are adjoint \(L\)-functions of \(\pi\) and \(\pi_0\) respectively (where the later one depends also on the additive character \(\psi\)); and \(\alpha_v(\varphi_v, \varphi_{0,v}, \phi_v)\) is a local linear form defined by integration of matrix coefficients, whose convergence is given in the Section 2 of this paper. In Section 4 of this paper, the author gives detailed calculations for the local linear form \(\alpha_v(\varphi_v, \varphi_{0,v}, \phi_v)\) in unramified situation, which provides foundation to the above conjectural formula. Note that the identity also relies on precise choices of measures in the Fourier-Jacobi period \(\mathcal{FJ}_{\psi}(\varphi,\varphi_0, \phi)\).
In the second part of this paper, the author studies the compatibility of the conjectural formula with that proposed by Ichino-Ikada for special orthogonal groups via theta correspondence. In particular, based on the known cases on the orthogonal side, the author verifies the conjectural formula for the pair \((\mathrm{SL}_2, \mathrm{Mp}_2)\), and also for the pair \((\mathrm{Sp}_4, \mathrm{Mp}_2)\) when the automorphic representation on the bigger group is endoscopic.
The paper is well written with adequate details. It should be a standard reference for relevant works.
Reviewer: Bin Xu (Chengdu)

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F70 Representation-theoretic methods; automorphic representations over local and global fields

Cite

References:

[1]J.Arthur, Intertwining operators and residues. I. Weighted characters, J. Funct. Anal.84 (1989), 19-84, doi:10.1016/0022-1236(89)90110-9; MR 999488 (90j:22018).10.1016/0022-1236(89)90110-9 ·Zbl 0679.22011 ·doi:10.1016/0022-1236(89)90110-9
[2]J.Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61 (American Mathematical Society, Providence, RI, 2013), Orthogonal and symplectic groups; MR 3135650.10.1090/coll/061 ·Zbl 1297.22023 ·doi:10.1090/coll/061
[3]H.Atobe, The local theta correspondence and the local Gan-Gross-Prasad conjecture for the symplectic-metaplectic case, Preprint (2015), arXiv:1502.03528v2. ·Zbl 1406.11039
[4]H.Atobe and W. T.Gan, On the local Langlands correspondence for quasi-split even orthogonal groups, Preprint (2016), arXiv:1602.01297. ·Zbl 1419.11088
[5]R.Beuzart-Plessis, A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the archimedean case, Preprint (2015), arXiv:1506.01452. ·Zbl 1475.22024
[6]R.Beuzart-Plessis, Comparison of local spherical characters and the Ichino-Ikeda conjecture for unitary groups, Preprint (2015), arXiv:1602.06538. ·Zbl 1511.22023
[7]J.Dixmier and P.Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2)102 (1978), 307-330 (French, with English summary);MR 517765 (80f:22005). ·Zbl 0392.43013
[8]W. T.Gan, B. H.Gross and D.Prasad, Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups, Astérisque346 (2012), 1-109 (English, with English and French summaries), Sur les conjectures de Gross et Prasad. I; MR 3202556. ·Zbl 1280.22019
[9]W. T.Gan and A.Ichino, On endoscopy and the refined Gross-Prasad conjecture for (SO_5, SO_4), J. Inst. Math. Jussieu10 (2011), 235-324, doi:10.1017/S1474748010000198; MR 2787690.10.1017/S1474748010000198 ·Zbl 1241.11058 ·doi:10.1017/S1474748010000198
[10]W. T.Gan and A.Ichino, Formal degrees and local theta correspondence, Invent. Math.195 (2014), 509-672, doi:10.1007/s00222-013-0460-5; MR 3166215.10.1007/s00222-013-0460-5 ·Zbl 1297.22017 ·doi:10.1007/s00222-013-0460-5
[11]W. T.Gan and A.Ichino, Gross-Prasad conjectures and local theta correspondences, Invent. Math.206 (2016), 705-799, doi:10.1007/s00222-016-0662-8; MR 3573972.10.1007/s00222-016-0662-8 ·Zbl 1358.11061 ·doi:10.1007/s00222-016-0662-8
[12]W. T.Gan, Y.Qiu and S.Takeda, The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula, Invent. Math.198 (2014), 739-831, doi:10.1007/s00222-014-0509-0; MR 3279536.10.1007/s00222-014-0509-0 ·Zbl 1320.11037 ·doi:10.1007/s00222-014-0509-0
[13]W. T.Gan and G.Savin, Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence, Compos. Math.148 (2012), 1655-1694, doi:10.1112/S0010437X12000486; MR 2999299.10.1112/S0010437X12000486 ·Zbl 1325.11046 ·doi:10.1112/S0010437X12000486
[14]D.Ginzburg, D.Jiang, S.Rallis and D.Soudry, L-functions for symplectic groups using Fourier-Jacobi models, in Arithmetic geometry and automorphic forms, Advanced Lectures in Mathematics (ALM), vol. 19 (International Press, Somerville, MA, 2011), 183-207; MR 2906909. ·Zbl 1325.11042
[15]D.Ginzburg, S.Rallis and D.Soudry, The descent map from automorphic representations of GL(n) to classical groups (World Scientific, Hackensack, NJ, 2011), doi:10.1142/9789814304993; MR 2848523 (2012g:22020).10.1142/7742 ·Zbl 1233.11056 ·doi:10.1142/7742
[16]B. H.Gross, On the motive of a reductive group, Invent. Math.130 (1997), 287-313, doi:10.1007/s0022200501; MR 1474159 (98m:20060).10.1007/s002220050186 ·Zbl 0904.11014 ·doi:10.1007/s002220050186
[17]Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Funct. Anal.19 (1975), 104-204; MR 0399356.10.1016/0022-1236(75)90034-8 ·Zbl 0315.43002 ·doi:10.1016/0022-1236(75)90034-8
[18]R. N.Harris, A refined gross-prasad conjecture for unitary groups, PhD thesis, University of California, San Diego ProQuest LLC, Ann Arbor, MI, 2011; MR 2890098.
[19]M.Harris and R.Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001). With an appendix by Vladimir G. Berkovich; MR 1876802 (2002m:11050). ·Zbl 1036.11027
[20]H.He, Unitary representations and theta correspondence for type I classical groups, J. Funct. Anal.199 (2003), 92-121, doi:10.1016/S0022-1236(02)00170-2; MR 1966824 (2004b:22016).10.1016/S0022-1236(02)00170-2 ·Zbl 1021.22008 ·doi:10.1016/S0022-1236(02)00170-2
[21]G.Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math.139 (2000), 439-455 (French, with English summary), doi:10.1007/s002220050012; MR 1738446 (2001e:11052).10.1007/s002220050012 ·Zbl 1048.11092 ·doi:10.1007/s002220050012
[22]A.Ichino, Pullbacks of Saito-Kurokawa lifts, Invent. Math.162 (2005), 551-647, doi:10.1007/s00222-005-0454-z; MR 2198222 (2007d:11048).10.1007/s00222-005-0454-z ·Zbl 1188.11020 ·doi:10.1007/s00222-005-0454-z
[23]A.Ichino and T.Ikeda, On Maass lifts and the central critical values of triple product L-functions, Amer. J. Math.130 (2008), 75-114, doi:10.1353/ajm.2008.0006;MR 2382143 (2009d:11079).10.1353/ajm.2008.0006 ·Zbl 1169.11018 ·doi:10.1353/ajm.2008.0006
[24]A.Ichino and T.Ikeda, On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal.19 (2010), 1378-1425, doi:10.1007/s00039-009-0040-4; MR 2585578 (2011a:11100).10.1007/s00039-009-0040-4 ·Zbl 1216.11057 ·doi:10.1007/s00039-009-0040-4
[25]H.Jacquet and S.Rallis, On the Gross-Prasad conjecture for unitary groups, on certain L-functions, Clay Mathematics Monographs, vol. 13 (American Mathematical Society, Providence, RI, 2011), 205-264; MR 2767518 (2012d:22026). ·Zbl 1222.22018
[26]H.Jacquet and J. A.Shalika, A non-vanishing theorem for zeta functions of GL_n, Invent. Math.38 (1976/77), 1-16; MR 0432596 (55 #5583).10.1007/BF01390166 ·Zbl 0349.12006 ·doi:10.1007/BF01390166
[27]H.Jacquet and J. A.Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math.103 (1981), 777-815, doi:10.2307/2374050; MR 623137 (82m:10050b).10.2307/2374050 ·Zbl 0491.10020 ·doi:10.2307/2374050
[28]R. P.Langlands, On the classification of irreducible representations of real algebraic groups, in Representation theory and harmonic analysis on semisimple Lie groups, Mathematical Surveys and Monographs, vol. 31 (American Mathematical Society, Providence, RI, 1989), 101-170, doi:10.1090/surv/031/03; MR 1011897 (91e:22017).10.1090/surv/031/03 ·Zbl 0741.22009 ·doi:10.1090/surv/031/03
[29]E.Lapid and Z.Mao, On an analogue of the Ichino-Ikeda conjecture for Whittaker coefficients on the metaplectic group, Preprint (2014), arXiv:1404.2905v2. ·Zbl 1418.11076
[30]E.Lapid and Z.Mao, A conjecture on Whittaker-Fourier coefficients of cusp forms, J. Number Theory146 (2015), 448-505; doi:10.1016/j.jnt.2013.10.003; MR 3267120.10.1016/j.jnt.2013.10.003 ·Zbl 1396.11081 ·doi:10.1016/j.jnt.2013.10.003
[31]E.Lapid and Z.Mao, Model transition for representations of metaplectic type, Int. Math. Res. Not. IMRN2015 (2015), 9486-9568; with an appendix by Marko Tadić, doi:10.1093/imrn/rnu225; MR 3431601.10.1093/imrn/rnu225 ·Zbl 1337.22009 ·doi:10.1093/imrn/rnu225
[32]E.Lapid and Z.Mao, Whittaker-Fourier coefficients of cusp forms on ˜Sp(n): reduction to a local statement, J. Number Theory146 (2015), 448-505, doi:10.1016/j.jnt.2013.10.003; MR 3267120.10.1016/j.jnt.2013.10.003 ·Zbl 1396.11081 ·doi:10.1016/j.jnt.2013.10.003
[33]E. M.Lapid and S.Rallis, On the local factors of representations of classical groups, in Automorphic representations, L-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11 (de Gruyter, Berlin, 2005), 309-359 (to appear in print), doi:10.1515/9783110892703.309; MR 2192828 (2006j:11071). ·Zbl 1188.11023
[34]W.-W.Li, La formule des traces stable pour le groupe métaplectique: les termes elliptiques, Invent. Math.202 (2015), 743-838 (French, with French summary), doi:10.1007/s00222-015-0577-9; MR 3418244.10.1007/s00222-015-0577-9 ·Zbl 1386.11074 ·doi:10.1007/s00222-015-0577-9
[35]Y.Liu, Relative trace formulae toward Bessel and Fourier-Jacobi periods on unitary groups, Manuscripta Math.145 (2014), 1-69, doi:10.1007/s00229-014-0666-x; MR 3244725.10.1007/s00229-014-0666-x ·Zbl 1301.11050 ·doi:10.1007/s00229-014-0666-x
[36]Y.Liu, Refined global Gan-Gross-Prasad conjecture for Bessel periods, J. Reine Angew. Math.717 (2016), 133-194, doi:10.1515/crelle-2014-0016; MR 3530537. ·Zbl 1404.11065
[37]Y.Liu and B.Sun, Uniqueness of Fourier-Jacobi models: the Archimedean case, J. Funct. Anal.265 (2013), 3325-3344, doi:10.1016/j.jfa.2013.08.034; MR 3110504.10.1016/j.jfa.2013.08.034 ·Zbl 1286.22012 ·doi:10.1016/j.jfa.2013.08.034
[38]A.Paul, On the Howe correspondence for symplectic-orthogonal dual pairs, J. Funct. Anal.228 (2005), 270-310, doi:10.1016/j.jfa.2005.03.015; MR 2175409 (2006g:20076).10.1016/j.jfa.2005.03.015 ·Zbl 1084.22008 ·doi:10.1016/j.jfa.2005.03.015
[39]Y.Qiu, Periods of Saito-Kurokawa representations, Int. Math. Res. Not. IMRN2014 (2014), 6698-6755; MR 3291638. ·Zbl 1370.11060
[40]S.Rallis, On the Howe duality conjecture, Compos. Math.51 (1984), 333-399; MR 743016 (85g:22034). ·Zbl 0624.22011
[41]R.Ranga Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math.157 (1993), 335-371; MR 1197062 (94a:22037).10.2140/pjm.1993.157.335 ·Zbl 0794.58017 ·doi:10.2140/pjm.1993.157.335
[42]X.Shen, The Whittaker-Shintani functions for symplectic groups, Int. Math. Res. Not. IMRN2014 (2014), 5769-5831; MR 3273064. ·Zbl 1306.22009
[43]A. J.Silberger, Introduction to harmonic analysis on reductive p-adic groups, Mathematical Notes, vol. 23 (Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1979), Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971-1973;MR 544991. ·Zbl 0458.22006
[44]B.Sun, Bounding matrix coefficients for smooth vectors of tempered representations, Proc. Amer. Math. Soc.137 (2009), 353-357, doi:10.1090/S0002-9939-08-09598-1; MR 2439460 (2010g:22023).10.1090/S0002-9939-08-09598-1 ·Zbl 1156.22013 ·doi:10.1090/S0002-9939-08-09598-1
[45]B.Sun, Multiplicity one theorems for Fourier-Jacobi models, Amer. J. Math.134 (2012), 1655-1678, doi:10.1353/ajm.2012.0044; MR 2999291.10.1353/ajm.2012.0044 ·Zbl 1280.22022 ·doi:10.1353/ajm.2012.0044
[46]B.Sun and C.-B.Zhu, Multiplicity one theorems: the Archimedean case, Ann. of Math. (2)175 (2012), 23-44, doi:10.4007/annals.2012.175.1.2; MR 2874638.10.4007/annals.2012.175.1.2 ·Zbl 1239.22014 ·doi:10.4007/annals.2012.175.1.2
[47]J.-L.Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9)60 (1981), 375-484 (French); MR 646366 (83h:10061). ·Zbl 0431.10015
[48]J.-L.Waldspurger, Une formule intégrale reliée à la conjecture locale de Gross-Prasad, 2e partie: extension aux représentations tempérées, Astérisque346 (2012), 171-312 (French, with English and French summaries), Sur les conjectures de Gross et Prasad. I; MR 3202558. ·Zbl 1290.22012
[49]H.Xue, The Gan-Gross-Prasad conjecture for U(n) ×U(n), Adv. Math.262 (2014), 1130-1191, doi:10.1016/j.aim.2014.06.010; MR 3228451.10.1016/j.aim.2014.06.010 ·Zbl 1301.11051 ·doi:10.1016/j.aim.2014.06.010
[50]H.Xue, Fourier-Jacobi periods and the central value of Rankin-Selberg L-functions, Israel J. Math.212 (2016), 547-633, doi:10.1007/s11856-016-1300-2; MR 3505397.10.1007/s11856-016-1300-2 ·Zbl 1347.11046 ·doi:10.1007/s11856-016-1300-2
[51]S.Yamana, On the Siegel-Weil formula: the case of singular forms, Compos. Math.147 (2011), 1003-1021, doi:10.1112/S0010437X11005379; MR 2822859.10.1112/S0010437X11005379 ·Zbl 1255.11026 ·doi:10.1112/S0010437X11005379
[52]S.Yamana, L-functions and theta correspondence for classical groups, Invent. Math.196 (2014), 651-732, doi:10.1007/s00222-013-0476-x; MR 3211043.10.1007/s00222-013-0476-x ·Zbl 1303.11054 ·doi:10.1007/s00222-013-0476-x
[53]W.Zhang, Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups, Ann. of Math. (2)180 (2014), 971-1049; MR 3245011.10.4007/annals.2014.180.3.4 ·Zbl 1322.11048 ·doi:10.4007/annals.2014.180.3.4
[54]W.Zhang, Automorphic period and the central value of Rankin-Selberg L-function, J. Amer. Math. Soc.27 (2014), 541-612, doi:10.1090/S0894-0347-2014-00784-0; MR 3164988.10.1090/S0894-0347-2014-00784-0 ·Zbl 1294.11069 ·doi:10.1090/S0894-0347-2014-00784-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp