[1] | J.Arthur, Intertwining operators and residues. I. Weighted characters, J. Funct. Anal.84 (1989), 19-84, doi:10.1016/0022-1236(89)90110-9; MR 999488 (90j:22018).10.1016/0022-1236(89)90110-9 ·Zbl 0679.22011 ·doi:10.1016/0022-1236(89)90110-9 |
[2] | J.Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61 (American Mathematical Society, Providence, RI, 2013), Orthogonal and symplectic groups; MR 3135650.10.1090/coll/061 ·Zbl 1297.22023 ·doi:10.1090/coll/061 |
[3] | H.Atobe, The local theta correspondence and the local Gan-Gross-Prasad conjecture for the symplectic-metaplectic case, Preprint (2015), arXiv:1502.03528v2. ·Zbl 1406.11039 |
[4] | H.Atobe and W. T.Gan, On the local Langlands correspondence for quasi-split even orthogonal groups, Preprint (2016), arXiv:1602.01297. ·Zbl 1419.11088 |
[5] | R.Beuzart-Plessis, A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the archimedean case, Preprint (2015), arXiv:1506.01452. ·Zbl 1475.22024 |
[6] | R.Beuzart-Plessis, Comparison of local spherical characters and the Ichino-Ikeda conjecture for unitary groups, Preprint (2015), arXiv:1602.06538. ·Zbl 1511.22023 |
[7] | J.Dixmier and P.Malliavin, Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2)102 (1978), 307-330 (French, with English summary);MR 517765 (80f:22005). ·Zbl 0392.43013 |
[8] | W. T.Gan, B. H.Gross and D.Prasad, Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups, Astérisque346 (2012), 1-109 (English, with English and French summaries), Sur les conjectures de Gross et Prasad. I; MR 3202556. ·Zbl 1280.22019 |
[9] | W. T.Gan and A.Ichino, On endoscopy and the refined Gross-Prasad conjecture for (SO_5, SO_4), J. Inst. Math. Jussieu10 (2011), 235-324, doi:10.1017/S1474748010000198; MR 2787690.10.1017/S1474748010000198 ·Zbl 1241.11058 ·doi:10.1017/S1474748010000198 |
[10] | W. T.Gan and A.Ichino, Formal degrees and local theta correspondence, Invent. Math.195 (2014), 509-672, doi:10.1007/s00222-013-0460-5; MR 3166215.10.1007/s00222-013-0460-5 ·Zbl 1297.22017 ·doi:10.1007/s00222-013-0460-5 |
[11] | W. T.Gan and A.Ichino, Gross-Prasad conjectures and local theta correspondences, Invent. Math.206 (2016), 705-799, doi:10.1007/s00222-016-0662-8; MR 3573972.10.1007/s00222-016-0662-8 ·Zbl 1358.11061 ·doi:10.1007/s00222-016-0662-8 |
[12] | W. T.Gan, Y.Qiu and S.Takeda, The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula, Invent. Math.198 (2014), 739-831, doi:10.1007/s00222-014-0509-0; MR 3279536.10.1007/s00222-014-0509-0 ·Zbl 1320.11037 ·doi:10.1007/s00222-014-0509-0 |
[13] | W. T.Gan and G.Savin, Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence, Compos. Math.148 (2012), 1655-1694, doi:10.1112/S0010437X12000486; MR 2999299.10.1112/S0010437X12000486 ·Zbl 1325.11046 ·doi:10.1112/S0010437X12000486 |
[14] | D.Ginzburg, D.Jiang, S.Rallis and D.Soudry, L-functions for symplectic groups using Fourier-Jacobi models, in Arithmetic geometry and automorphic forms, Advanced Lectures in Mathematics (ALM), vol. 19 (International Press, Somerville, MA, 2011), 183-207; MR 2906909. ·Zbl 1325.11042 |
[15] | D.Ginzburg, S.Rallis and D.Soudry, The descent map from automorphic representations of GL(n) to classical groups (World Scientific, Hackensack, NJ, 2011), doi:10.1142/9789814304993; MR 2848523 (2012g:22020).10.1142/7742 ·Zbl 1233.11056 ·doi:10.1142/7742 |
[16] | B. H.Gross, On the motive of a reductive group, Invent. Math.130 (1997), 287-313, doi:10.1007/s0022200501; MR 1474159 (98m:20060).10.1007/s002220050186 ·Zbl 0904.11014 ·doi:10.1007/s002220050186 |
[17] | Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Funct. Anal.19 (1975), 104-204; MR 0399356.10.1016/0022-1236(75)90034-8 ·Zbl 0315.43002 ·doi:10.1016/0022-1236(75)90034-8 |
[18] | R. N.Harris, A refined gross-prasad conjecture for unitary groups, PhD thesis, University of California, San Diego ProQuest LLC, Ann Arbor, MI, 2011; MR 2890098. |
[19] | M.Harris and R.Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001). With an appendix by Vladimir G. Berkovich; MR 1876802 (2002m:11050). ·Zbl 1036.11027 |
[20] | H.He, Unitary representations and theta correspondence for type I classical groups, J. Funct. Anal.199 (2003), 92-121, doi:10.1016/S0022-1236(02)00170-2; MR 1966824 (2004b:22016).10.1016/S0022-1236(02)00170-2 ·Zbl 1021.22008 ·doi:10.1016/S0022-1236(02)00170-2 |
[21] | G.Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math.139 (2000), 439-455 (French, with English summary), doi:10.1007/s002220050012; MR 1738446 (2001e:11052).10.1007/s002220050012 ·Zbl 1048.11092 ·doi:10.1007/s002220050012 |
[22] | A.Ichino, Pullbacks of Saito-Kurokawa lifts, Invent. Math.162 (2005), 551-647, doi:10.1007/s00222-005-0454-z; MR 2198222 (2007d:11048).10.1007/s00222-005-0454-z ·Zbl 1188.11020 ·doi:10.1007/s00222-005-0454-z |
[23] | A.Ichino and T.Ikeda, On Maass lifts and the central critical values of triple product L-functions, Amer. J. Math.130 (2008), 75-114, doi:10.1353/ajm.2008.0006;MR 2382143 (2009d:11079).10.1353/ajm.2008.0006 ·Zbl 1169.11018 ·doi:10.1353/ajm.2008.0006 |
[24] | A.Ichino and T.Ikeda, On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal.19 (2010), 1378-1425, doi:10.1007/s00039-009-0040-4; MR 2585578 (2011a:11100).10.1007/s00039-009-0040-4 ·Zbl 1216.11057 ·doi:10.1007/s00039-009-0040-4 |
[25] | H.Jacquet and S.Rallis, On the Gross-Prasad conjecture for unitary groups, on certain L-functions, Clay Mathematics Monographs, vol. 13 (American Mathematical Society, Providence, RI, 2011), 205-264; MR 2767518 (2012d:22026). ·Zbl 1222.22018 |
[26] | H.Jacquet and J. A.Shalika, A non-vanishing theorem for zeta functions of GL_n, Invent. Math.38 (1976/77), 1-16; MR 0432596 (55 #5583).10.1007/BF01390166 ·Zbl 0349.12006 ·doi:10.1007/BF01390166 |
[27] | H.Jacquet and J. A.Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math.103 (1981), 777-815, doi:10.2307/2374050; MR 623137 (82m:10050b).10.2307/2374050 ·Zbl 0491.10020 ·doi:10.2307/2374050 |
[28] | R. P.Langlands, On the classification of irreducible representations of real algebraic groups, in Representation theory and harmonic analysis on semisimple Lie groups, Mathematical Surveys and Monographs, vol. 31 (American Mathematical Society, Providence, RI, 1989), 101-170, doi:10.1090/surv/031/03; MR 1011897 (91e:22017).10.1090/surv/031/03 ·Zbl 0741.22009 ·doi:10.1090/surv/031/03 |
[29] | E.Lapid and Z.Mao, On an analogue of the Ichino-Ikeda conjecture for Whittaker coefficients on the metaplectic group, Preprint (2014), arXiv:1404.2905v2. ·Zbl 1418.11076 |
[30] | E.Lapid and Z.Mao, A conjecture on Whittaker-Fourier coefficients of cusp forms, J. Number Theory146 (2015), 448-505; doi:10.1016/j.jnt.2013.10.003; MR 3267120.10.1016/j.jnt.2013.10.003 ·Zbl 1396.11081 ·doi:10.1016/j.jnt.2013.10.003 |
[31] | E.Lapid and Z.Mao, Model transition for representations of metaplectic type, Int. Math. Res. Not. IMRN2015 (2015), 9486-9568; with an appendix by Marko Tadić, doi:10.1093/imrn/rnu225; MR 3431601.10.1093/imrn/rnu225 ·Zbl 1337.22009 ·doi:10.1093/imrn/rnu225 |
[32] | E.Lapid and Z.Mao, Whittaker-Fourier coefficients of cusp forms on ˜Sp(n): reduction to a local statement, J. Number Theory146 (2015), 448-505, doi:10.1016/j.jnt.2013.10.003; MR 3267120.10.1016/j.jnt.2013.10.003 ·Zbl 1396.11081 ·doi:10.1016/j.jnt.2013.10.003 |
[33] | E. M.Lapid and S.Rallis, On the local factors of representations of classical groups, in Automorphic representations, L-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11 (de Gruyter, Berlin, 2005), 309-359 (to appear in print), doi:10.1515/9783110892703.309; MR 2192828 (2006j:11071). ·Zbl 1188.11023 |
[34] | W.-W.Li, La formule des traces stable pour le groupe métaplectique: les termes elliptiques, Invent. Math.202 (2015), 743-838 (French, with French summary), doi:10.1007/s00222-015-0577-9; MR 3418244.10.1007/s00222-015-0577-9 ·Zbl 1386.11074 ·doi:10.1007/s00222-015-0577-9 |
[35] | Y.Liu, Relative trace formulae toward Bessel and Fourier-Jacobi periods on unitary groups, Manuscripta Math.145 (2014), 1-69, doi:10.1007/s00229-014-0666-x; MR 3244725.10.1007/s00229-014-0666-x ·Zbl 1301.11050 ·doi:10.1007/s00229-014-0666-x |
[36] | Y.Liu, Refined global Gan-Gross-Prasad conjecture for Bessel periods, J. Reine Angew. Math.717 (2016), 133-194, doi:10.1515/crelle-2014-0016; MR 3530537. ·Zbl 1404.11065 |
[37] | Y.Liu and B.Sun, Uniqueness of Fourier-Jacobi models: the Archimedean case, J. Funct. Anal.265 (2013), 3325-3344, doi:10.1016/j.jfa.2013.08.034; MR 3110504.10.1016/j.jfa.2013.08.034 ·Zbl 1286.22012 ·doi:10.1016/j.jfa.2013.08.034 |
[38] | A.Paul, On the Howe correspondence for symplectic-orthogonal dual pairs, J. Funct. Anal.228 (2005), 270-310, doi:10.1016/j.jfa.2005.03.015; MR 2175409 (2006g:20076).10.1016/j.jfa.2005.03.015 ·Zbl 1084.22008 ·doi:10.1016/j.jfa.2005.03.015 |
[39] | Y.Qiu, Periods of Saito-Kurokawa representations, Int. Math. Res. Not. IMRN2014 (2014), 6698-6755; MR 3291638. ·Zbl 1370.11060 |
[40] | S.Rallis, On the Howe duality conjecture, Compos. Math.51 (1984), 333-399; MR 743016 (85g:22034). ·Zbl 0624.22011 |
[41] | R.Ranga Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math.157 (1993), 335-371; MR 1197062 (94a:22037).10.2140/pjm.1993.157.335 ·Zbl 0794.58017 ·doi:10.2140/pjm.1993.157.335 |
[42] | X.Shen, The Whittaker-Shintani functions for symplectic groups, Int. Math. Res. Not. IMRN2014 (2014), 5769-5831; MR 3273064. ·Zbl 1306.22009 |
[43] | A. J.Silberger, Introduction to harmonic analysis on reductive p-adic groups, Mathematical Notes, vol. 23 (Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1979), Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971-1973;MR 544991. ·Zbl 0458.22006 |
[44] | B.Sun, Bounding matrix coefficients for smooth vectors of tempered representations, Proc. Amer. Math. Soc.137 (2009), 353-357, doi:10.1090/S0002-9939-08-09598-1; MR 2439460 (2010g:22023).10.1090/S0002-9939-08-09598-1 ·Zbl 1156.22013 ·doi:10.1090/S0002-9939-08-09598-1 |
[45] | B.Sun, Multiplicity one theorems for Fourier-Jacobi models, Amer. J. Math.134 (2012), 1655-1678, doi:10.1353/ajm.2012.0044; MR 2999291.10.1353/ajm.2012.0044 ·Zbl 1280.22022 ·doi:10.1353/ajm.2012.0044 |
[46] | B.Sun and C.-B.Zhu, Multiplicity one theorems: the Archimedean case, Ann. of Math. (2)175 (2012), 23-44, doi:10.4007/annals.2012.175.1.2; MR 2874638.10.4007/annals.2012.175.1.2 ·Zbl 1239.22014 ·doi:10.4007/annals.2012.175.1.2 |
[47] | J.-L.Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9)60 (1981), 375-484 (French); MR 646366 (83h:10061). ·Zbl 0431.10015 |
[48] | J.-L.Waldspurger, Une formule intégrale reliée à la conjecture locale de Gross-Prasad, 2e partie: extension aux représentations tempérées, Astérisque346 (2012), 171-312 (French, with English and French summaries), Sur les conjectures de Gross et Prasad. I; MR 3202558. ·Zbl 1290.22012 |
[49] | H.Xue, The Gan-Gross-Prasad conjecture for U(n) ×U(n), Adv. Math.262 (2014), 1130-1191, doi:10.1016/j.aim.2014.06.010; MR 3228451.10.1016/j.aim.2014.06.010 ·Zbl 1301.11051 ·doi:10.1016/j.aim.2014.06.010 |
[50] | H.Xue, Fourier-Jacobi periods and the central value of Rankin-Selberg L-functions, Israel J. Math.212 (2016), 547-633, doi:10.1007/s11856-016-1300-2; MR 3505397.10.1007/s11856-016-1300-2 ·Zbl 1347.11046 ·doi:10.1007/s11856-016-1300-2 |
[51] | S.Yamana, On the Siegel-Weil formula: the case of singular forms, Compos. Math.147 (2011), 1003-1021, doi:10.1112/S0010437X11005379; MR 2822859.10.1112/S0010437X11005379 ·Zbl 1255.11026 ·doi:10.1112/S0010437X11005379 |
[52] | S.Yamana, L-functions and theta correspondence for classical groups, Invent. Math.196 (2014), 651-732, doi:10.1007/s00222-013-0476-x; MR 3211043.10.1007/s00222-013-0476-x ·Zbl 1303.11054 ·doi:10.1007/s00222-013-0476-x |
[53] | W.Zhang, Fourier transform and the global Gan-Gross-Prasad conjecture for unitary groups, Ann. of Math. (2)180 (2014), 971-1049; MR 3245011.10.4007/annals.2014.180.3.4 ·Zbl 1322.11048 ·doi:10.4007/annals.2014.180.3.4 |
[54] | W.Zhang, Automorphic period and the central value of Rankin-Selberg L-function, J. Amer. Math. Soc.27 (2014), 541-612, doi:10.1090/S0894-0347-2014-00784-0; MR 3164988.10.1090/S0894-0347-2014-00784-0 ·Zbl 1294.11069 ·doi:10.1090/S0894-0347-2014-00784-0 |