Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Renormalizing the Kardar-Parisi-Zhang equation in \(d\ge 3\) in weak disorder.(English)Zbl 1434.60278

Summary: We study Kardar-Parisi-Zhang equation in spatial dimension 3 or larger driven by a Gaussian space-time white noise with a small convolution in space. When the noise intensity is small, it is known that the solutions converge to a random limit as the smoothing parameter is turned off. We identify this limit, in the case of general initial conditions ranging from flat to droplet. We provide strong approximations of the solution which obey exactly the limit law. We prove that this limit has sub-Gaussian lower tails, implying existence of all negative (and positive) moments.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
35R60 PDEs with randomness, stochastic partial differential equations
35Q82 PDEs in connection with statistical mechanics
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
82D60 Statistical mechanics of polymers

Cite

References:

[1]Alberts, T.; Khanin, K.; Quastel, J., The intermediate disorder regime for directed polymers in dimension 1+1, Ann. Probab., 42, 1212-1256 (2014) ·Zbl 1292.82014 ·doi:10.1214/13-AOP858
[2]Alberts, T.; Khanin, K.; Quastel, J., The continuum directed random polymer, J. Stat. Phys., 154, 305-326 (2014) ·Zbl 1291.82143 ·doi:10.1007/s10955-013-0872-z
[3]Bertini, L.; Giacomin, G., Stochastic Burgers and KPZ equations from particle systems, Commun. Math. Phys., 183, 3, 571-607 (1997) ·Zbl 0874.60059 ·doi:10.1007/s002200050044
[4]Caravenna, F., Sun, R., Zygouras, N.: The two-dimensional KPZ equation in the entire subcritical regime. Ann. Probab. arXiv:1812.03911 ·Zbl 1427.82063
[5]Carmona, P.; Hu, Y., On the partition function of a directed polymer in a Gaussian random environment, Prob. Theory Relat. Fields, 124, 431-457 (2002) ·Zbl 1015.60100 ·doi:10.1007/s004400200213
[6]Chandra, A.; Weber, H., Stochastic PDEs, regularity structures and interacting particle systems Ann, Fac. Sci. Toulouse Math., 26, 847-909 (2017) ·Zbl 1421.81001 ·doi:10.5802/afst.1555
[7]Chatterjee, S., Dunlap, A.: Constructing a solution of the (2 + 1)-dimensional KPZ equation. Ann. Probab. arXiv preprint. arXiv:1809.00803 ·Zbl 1434.60148
[8]Comets, F.: Directed polymers in random environments, Lect. Notes Math. 2175, Springer (2017) ·Zbl 1392.60002
[9]Comets, F., Cosco, C., Mukherjee, C.: Space-time fluctuation of the Kardar-Parisi-Zhang equation in \(d \ge 3\) and the Gaussian free field, arXiv:1905.03200 ·Zbl 1434.60278
[10]Corwin, I., The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl., 1, 1130001 (2012) ·Zbl 1247.82040 ·doi:10.1142/S2010326311300014
[11]Cosco, C., Nakajima, S.: Gaussian fluctuations for the directed polymer partition function for \(d\ge 3\) and in the whole \(L^2\)-region, arXiv:1903.00997 ·Zbl 1484.60112
[12]Dunlap, A., Gu, Y., Ryzhik, L., Zeitouni, O.: Fluctuations of the solutions to the KPZ equation in dimensions three and higher. arXiv:1812.05768 ·Zbl 1445.35345
[13]Dunlap, A., Gu, Y., Ryzhik, L., Zeitouni, O.: The random heat equation in dimensions three and higher: the homogenization viewpoint arXiv:1808.07557 ·Zbl 1445.35345
[14]Gu, Y.: Gaussian fluctuations of the \(2\) D KPZ equation. arXiv preprint, arXiv: 1812.07467 ·Zbl 1431.35257
[15]Gu, Y.; Ryzhik, L.; Zeitouni, O., The Edwards-Wilkinson limit of the random heat equation in dimensions three and higher, Commun. Math. Phys., 363, 351-388 (2018) ·Zbl 1400.82131 ·doi:10.1007/s00220-018-3202-0
[16]Hairer, M., Solving the KPZ equation, Ann. Math., 178, 558-664 (2013) ·Zbl 1281.60060 ·doi:10.4007/annals.2013.178.2.4
[17]Hairer, M., A theory of regularity structures, Invent. Math., 198, 2, 269-504 (2014) ·Zbl 1332.60093 ·doi:10.1007/s00222-014-0505-4
[18]Hu, Y., Le, K.: Asymptotics of the density of parabolic Anderson random fields, arXiv preprint, arXiv:1801.03386 ·Zbl 1484.60068
[19]Kardar, M.; Parisi, G.; Zhang, YZ, Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56, 889-892 (1986) ·Zbl 1101.82329 ·doi:10.1103/PhysRevLett.56.889
[20]Kunita, H., Stochastic Flows and Stochastic Differential Equations (1990), Cambridge: Cambridge University Press, Cambridge ·Zbl 0743.60052
[21]Magnen, J.; Unterberger, J., The scaling limit of the KPZ equation in space dimension 3 and higher, J. Stat. Phys., 171, 4, 543-598 (2018) ·Zbl 1394.35508 ·doi:10.1007/s10955-018-2014-0
[22]Moreno Flores, G., On the (strict) positivity of solutions of the stochastic heat equation, Ann. Probab., 42, 4, 1635-1643 (2014) ·Zbl 1306.60088 ·doi:10.1214/14-AOP911
[23]Mourrat, J-C; Weber, H., Global well-posedness of the dynamic \(\Phi^4\) model in the plane, Ann. Probab, 45, 4, 2398-2476 (2017) ·Zbl 1381.60098 ·doi:10.1214/16-AOP1116
[24]Mukherjee, C.; Shamov, A.; Zeitouni, O., Weak and strong disorder for the stochastic heat equation and the continuous directed polymer in \(d\ge 3\), Electr. Commun. Prob., 21, 12 (2016) ·Zbl 1348.60094
[25]Quastel, J., Introduction to KPZ Current Developments in Mathematics, 125-194 (2011), Somerville: Int. Press, Somerville ·Zbl 1316.60019
[26]Sasamoto, T., The 1D Kardar-Parisi-Zhang equation: height distribution and universality, PTEP Prog. Theor. Exp. Phys., 2016, 2, 12 (2016) ·Zbl 1361.60051
[27]Sinai, Y., A remark concerning random walks with random potentials, Fundam. Math., 147, 173-180 (1995) ·Zbl 0835.60062 ·doi:10.4064/fm-147-2-173-180
[28]Talagrand, M.: Mean Field Models for Spin Glasses: A First Course (Saint-Flour 2000). Lect. Notes Math. 1816, Springer (2003) ·Zbl 1042.82001
[29]Vargas, V., A Local limit theorem for directed polymers in random media: the continuous and the discrete case, Ann. Inst. H. Poincaré Probab. Stat., 42, 521-534 (2006) ·Zbl 1104.60067 ·doi:10.1016/j.anihpb.2005.08.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp