[1] | Alberts, T.; Khanin, K.; Quastel, J., The intermediate disorder regime for directed polymers in dimension 1+1, Ann. Probab., 42, 1212-1256 (2014) ·Zbl 1292.82014 ·doi:10.1214/13-AOP858 |
[2] | Alberts, T.; Khanin, K.; Quastel, J., The continuum directed random polymer, J. Stat. Phys., 154, 305-326 (2014) ·Zbl 1291.82143 ·doi:10.1007/s10955-013-0872-z |
[3] | Bertini, L.; Giacomin, G., Stochastic Burgers and KPZ equations from particle systems, Commun. Math. Phys., 183, 3, 571-607 (1997) ·Zbl 0874.60059 ·doi:10.1007/s002200050044 |
[4] | Caravenna, F., Sun, R., Zygouras, N.: The two-dimensional KPZ equation in the entire subcritical regime. Ann. Probab. arXiv:1812.03911 ·Zbl 1427.82063 |
[5] | Carmona, P.; Hu, Y., On the partition function of a directed polymer in a Gaussian random environment, Prob. Theory Relat. Fields, 124, 431-457 (2002) ·Zbl 1015.60100 ·doi:10.1007/s004400200213 |
[6] | Chandra, A.; Weber, H., Stochastic PDEs, regularity structures and interacting particle systems Ann, Fac. Sci. Toulouse Math., 26, 847-909 (2017) ·Zbl 1421.81001 ·doi:10.5802/afst.1555 |
[7] | Chatterjee, S., Dunlap, A.: Constructing a solution of the (2 + 1)-dimensional KPZ equation. Ann. Probab. arXiv preprint. arXiv:1809.00803 ·Zbl 1434.60148 |
[8] | Comets, F.: Directed polymers in random environments, Lect. Notes Math. 2175, Springer (2017) ·Zbl 1392.60002 |
[9] | Comets, F., Cosco, C., Mukherjee, C.: Space-time fluctuation of the Kardar-Parisi-Zhang equation in \(d \ge 3\) and the Gaussian free field, arXiv:1905.03200 ·Zbl 1434.60278 |
[10] | Corwin, I., The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl., 1, 1130001 (2012) ·Zbl 1247.82040 ·doi:10.1142/S2010326311300014 |
[11] | Cosco, C., Nakajima, S.: Gaussian fluctuations for the directed polymer partition function for \(d\ge 3\) and in the whole \(L^2\)-region, arXiv:1903.00997 ·Zbl 1484.60112 |
[12] | Dunlap, A., Gu, Y., Ryzhik, L., Zeitouni, O.: Fluctuations of the solutions to the KPZ equation in dimensions three and higher. arXiv:1812.05768 ·Zbl 1445.35345 |
[13] | Dunlap, A., Gu, Y., Ryzhik, L., Zeitouni, O.: The random heat equation in dimensions three and higher: the homogenization viewpoint arXiv:1808.07557 ·Zbl 1445.35345 |
[14] | Gu, Y.: Gaussian fluctuations of the \(2\) D KPZ equation. arXiv preprint, arXiv: 1812.07467 ·Zbl 1431.35257 |
[15] | Gu, Y.; Ryzhik, L.; Zeitouni, O., The Edwards-Wilkinson limit of the random heat equation in dimensions three and higher, Commun. Math. Phys., 363, 351-388 (2018) ·Zbl 1400.82131 ·doi:10.1007/s00220-018-3202-0 |
[16] | Hairer, M., Solving the KPZ equation, Ann. Math., 178, 558-664 (2013) ·Zbl 1281.60060 ·doi:10.4007/annals.2013.178.2.4 |
[17] | Hairer, M., A theory of regularity structures, Invent. Math., 198, 2, 269-504 (2014) ·Zbl 1332.60093 ·doi:10.1007/s00222-014-0505-4 |
[18] | Hu, Y., Le, K.: Asymptotics of the density of parabolic Anderson random fields, arXiv preprint, arXiv:1801.03386 ·Zbl 1484.60068 |
[19] | Kardar, M.; Parisi, G.; Zhang, YZ, Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56, 889-892 (1986) ·Zbl 1101.82329 ·doi:10.1103/PhysRevLett.56.889 |
[20] | Kunita, H., Stochastic Flows and Stochastic Differential Equations (1990), Cambridge: Cambridge University Press, Cambridge ·Zbl 0743.60052 |
[21] | Magnen, J.; Unterberger, J., The scaling limit of the KPZ equation in space dimension 3 and higher, J. Stat. Phys., 171, 4, 543-598 (2018) ·Zbl 1394.35508 ·doi:10.1007/s10955-018-2014-0 |
[22] | Moreno Flores, G., On the (strict) positivity of solutions of the stochastic heat equation, Ann. Probab., 42, 4, 1635-1643 (2014) ·Zbl 1306.60088 ·doi:10.1214/14-AOP911 |
[23] | Mourrat, J-C; Weber, H., Global well-posedness of the dynamic \(\Phi^4\) model in the plane, Ann. Probab, 45, 4, 2398-2476 (2017) ·Zbl 1381.60098 ·doi:10.1214/16-AOP1116 |
[24] | Mukherjee, C.; Shamov, A.; Zeitouni, O., Weak and strong disorder for the stochastic heat equation and the continuous directed polymer in \(d\ge 3\), Electr. Commun. Prob., 21, 12 (2016) ·Zbl 1348.60094 |
[25] | Quastel, J., Introduction to KPZ Current Developments in Mathematics, 125-194 (2011), Somerville: Int. Press, Somerville ·Zbl 1316.60019 |
[26] | Sasamoto, T., The 1D Kardar-Parisi-Zhang equation: height distribution and universality, PTEP Prog. Theor. Exp. Phys., 2016, 2, 12 (2016) ·Zbl 1361.60051 |
[27] | Sinai, Y., A remark concerning random walks with random potentials, Fundam. Math., 147, 173-180 (1995) ·Zbl 0835.60062 ·doi:10.4064/fm-147-2-173-180 |
[28] | Talagrand, M.: Mean Field Models for Spin Glasses: A First Course (Saint-Flour 2000). Lect. Notes Math. 1816, Springer (2003) ·Zbl 1042.82001 |
[29] | Vargas, V., A Local limit theorem for directed polymers in random media: the continuous and the discrete case, Ann. Inst. H. Poincaré Probab. Stat., 42, 521-534 (2006) ·Zbl 1104.60067 ·doi:10.1016/j.anihpb.2005.08.002 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.