Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Mirror extensions of rational vertex operator algebras.(English)Zbl 1433.17036

From the introduction: In this paper, mirror extensions of rational vertex operator algebras are considered. The mirror extension conjecture is proved.
Mirror extensions were first studied in the context of conformal nets; new conformalnets were obtained, and it was further proved that these conformal nets cannot be obtained by cosets, orbifolds and simple current extensions [Feng Xu, Commun. Math. Phys. 270, No. 3, 835–847 (2007;Zbl 1121.81111). ]. The mirrorextensions of vertex operator algebras were studied in [C. Dong et al., Commun. Math. Phys. 329, No. 1, 263–294 (2014;Zbl 1295.81086)]: mirror extensions ofspecific vertex operator algebras were obtained, and it was conjectured that the mirrorextensions exist for general vertex operator algebras satisfying some conditions. …
It was conjectured in [Dong et al., loc. cit.] that if there is a vertex operator algebra structure on \(V^e\) such that \(V^e\) is an extension vertex operator algebra of \(V\), then \((V^c)^e\) has a vertex operator algebra structure such that \((V^c)^e\) is an extension vertex operator algebra of \(V^c\), the so-called mirror extension vertex operator algebra of \(V^c\). The main goal of this paper is to prove this conjecture.

MSC:

17B69 Vertex operators; vertex operator algebras and related structures

Cite

References:

[1]Abe, Toshiyuki; Buhl, Geoffrey; Dong, Chongying, Rationality, regularity, and \(C_2\)-cofiniteness, Trans. Amer. Math. Soc., 356, 8, 3391-3402 (electronic) (2004) ·Zbl 1070.17011 ·doi:10.1090/S0002-9947-03-03413-5
[2]Abe, Toshiyuki; Dong, Chongying; Li, Haisheng, Fusion rules for the vertex operator algebra \(M(1)\) and \(V^+_L\), Comm. Math. Phys., 253, 1, 171-219 (2005) ·Zbl 1207.17032 ·doi:10.1007/s00220-004-1132-5
[3]Bakalov, Bojko; Kirillov, Alexander, Jr., Lectures on tensor categories and modular functors, University Lecture Series 21, x+221 pp. (2001), American Mathematical Society, Providence, RI ·Zbl 0965.18002
[4]Davydov, Alexei; M{\"u}ger, Michael; Nikshych, Dmitri; Ostrik, Victor, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math., 677, 135-177 (2013) ·Zbl 1271.18008
[5]Dong, Chongying; Jiao, Xiangyu; Xu, Feng, Mirror extensions of vertex operator algebras, Comm. Math. Phys., 329, 1, 263-294 (2014) ·Zbl 1295.81086 ·doi:10.1007/s00220-014-1933-0
[6]Dong, Chongying; Jiao, Xiangyu; Xu, Feng, Quantum dimensions and quantum Galois theory, Trans. Amer. Math. Soc., 365, 12, 6441-6469 (2013) ·Zbl 1337.17018 ·doi:10.1090/S0002-9947-2013-05863-1
[7]Dong, Chongying; Li, Haisheng; Mason, Geoffrey, Regularity of rational vertex operator algebras, Adv. Math., 132, 1, 148-166 (1997) ·Zbl 0902.17014 ·doi:10.1006/aima.1997.1681
[8]Dong, Chongying; Mason, Geoffrey; Zhu, Yongchang, Discrete series of the Virasoro algebra and the moonshine module. Algebraic groups and their generalizations: quantum and infinite-dimensional methods, University Park, PA, 1991, Proc. Sympos. Pure Math. 56, 295-316 (1994), Amer. Math. Soc., Providence, RI ·Zbl 0813.17019
[9]Etingof, Pavel; Nikshych, Dmitri; Ostrik, Viktor, On fusion categories, Ann. of Math. (2), 162, 2, 581-642 (2005) ·Zbl 1125.16025 ·doi:10.4007/annals.2005.162.581
[10]Frenkel, I. B., Representations of affine Lie algebras, Hecke modular forms and Korteweg-de Vries type equations. Lie algebras and related topics, New Brunswick, N.J., 1981, Lecture Notes in Math. 933, 71-110 (1982), Springer, Berlin-New York ·Zbl 0505.17008
[11]Frenkel, Igor B.; Huang, Yi-Zhi; Lepowsky, James, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104, 494, viii+64 pp. (1993) ·Zbl 0789.17022 ·doi:10.1090/memo/0494
[12]Frenkel, Igor; Lepowsky, James; Meurman, Arne, Vertex operator algebras and the Monster, Pure and Applied Mathematics 134, liv+508 pp. (1988), Academic Press, Inc., Boston, MA ·Zbl 0674.17001
[13]Frenkel, Igor B.; Zhu, Yongchang, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J., 66, 1, 123-168 (1992) ·Zbl 0848.17032 ·doi:10.1215/S0012-7094-92-06604-X
[14]Huang, Yi-Zhi, A theory of tensor products for module categories for a vertex operator algebra. IV, J. Pure Appl. Algebra, 100, 1-3, 173-216 (1995) ·Zbl 0841.17015 ·doi:10.1016/0022-4049(95)00050-7
[15]Huang, Yi-Zhi, Virasoro vertex operator algebras, the (nonmeromorphic) operator product expansion and the tensor product theory, J. Algebra, 182, 1, 201-234 (1996) ·Zbl 0862.17022 ·doi:10.1006/jabr.1996.0168
[16]Huang, Yi-Zhi, Differential equations and intertwining operators, Commun. Contemp. Math., 7, 3, 375-400 (2005) ·Zbl 1070.17012 ·doi:10.1142/S0219199705001799
[17]Huang, Yi-Zhi, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math., 10, suppl. 1, 871-911 (2008) ·Zbl 1169.17019 ·doi:10.1142/S0219199708003083
[18]Huang, Yi-Zhi; Kirillov, Alexander, Jr.; Lepowsky, James, Braided tensor categories and extensions of vertex operator algebras, Comm. Math. Phys., 337, 3, 1143-1159 (2015) ·Zbl 1388.17014 ·doi:10.1007/s00220-015-2292-1
[19]Huang, Y.-Z.; Lepowsky, J., A theory of tensor products for module categories for a vertex operator algebra. I, Selecta Math. (N.S.), 1, 4, 699-756 (1995) ·Zbl 0854.17032 ·doi:10.1007/BF01587908
[20]Huang, Y.-Z.; Lepowsky, J., A theory of tensor products for module categories for a vertex operator algebra. II, Selecta Math. (N.S.), 1, 4, 757-786 (1995) ·Zbl 0854.17032 ·doi:10.1007/BF01587908
[21]Huang, Yi-Zhi; Lepowsky, James, A theory of tensor products for module categories for a vertex operator algebra. III, J. Pure Appl. Algebra, 100, 1-3, 141-171 (1995) ·Zbl 0841.17014 ·doi:10.1016/0022-4049(95)00049-3
[22]Huang, Yi-Zhi; Lepowsky, James, Tensor products of modules for a vertex operator algebra and vertex tensor categories. Lie theory and geometry, Progr. Math. 123, 349-383 (1994), Birkh\"auser Boston, Boston, MA ·Zbl 0848.17031
[23]Kassel, Christian, Quantum groups, Graduate Texts in Mathematics 155, xii+531 pp. (1995), Springer-Verlag, New York ·Zbl 0808.17003 ·doi:10.1007/978-1-4612-0783-2
[24]Kirillov, Alexander, Jr.; Ostrik, Viktor, On a \(q\)-analogue of the McKay correspondence and the ADE classification of \(\mathfrak{sl}_2\) conformal field theories, Adv. Math., 171, 2, 183-227 (2002) ·Zbl 1024.17013 ·doi:10.1006/aima.2002.2072
[25]Lepowsky, James; Li, Haisheng, Introduction to vertex operator algebras and their representations, Progress in Mathematics 227, xiv+318 pp. (2004), Birkh\"auser Boston, Inc., Boston, MA ·Zbl 1055.17001 ·doi:10.1007/978-0-8176-8186-9
[26]Li, Haisheng, Some finiteness properties of regular vertex operator algebras, J. Algebra, 212, 2, 495-514 (1999) ·Zbl 0953.17017 ·doi:10.1006/jabr.1998.7654
[27]M{\"u}ger, Michael, On the structure of modular categories, Proc. London Math. Soc. (3), 87, 2, 291-308 (2003) ·Zbl 1037.18005 ·doi:10.1112/S0024611503014187
[28]M{\"u}ger, Michael, From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra, 180, 1-2, 159-219 (2003) ·Zbl 1033.18003 ·doi:10.1016/S0022-4049(02)00248-7
[29]Nakanishi, Tomoki; Tsuchiya, Akihiro, Level-rank duality of WZW models in conformal field theory, Comm. Math. Phys., 144, 2, 351-372 (1992) ·Zbl 0751.17024
[30]Ostrik, Victor, Module categories, weak Hopf algebras and modular invariants, Transform. Groups, 8, 2, 177-206 (2003) ·Zbl 1044.18004 ·doi:10.1007/s00031-003-0515-6
[31]Ostrik, Victor; Sun, Michael, Level-rank duality via tensor categories, Comm. Math. Phys., 326, 1, 49-61 (2014) ·Zbl 1371.18006 ·doi:10.1007/s00220-013-1869-9
[32]Xu, Feng, Mirror extensions of local nets, Comm. Math. Phys., 270, 3, 835-847 (2007) ·Zbl 1121.81111 ·doi:10.1007/s00220-006-0184-0
[33]Zhu, Yongchang, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc., 9, 1, 237-302 (1996) ·Zbl 0854.17034 ·doi:10.1090/S0894-0347-96-00182-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp