[1] | Abe, Toshiyuki; Buhl, Geoffrey; Dong, Chongying, Rationality, regularity, and \(C_2\)-cofiniteness, Trans. Amer. Math. Soc., 356, 8, 3391-3402 (electronic) (2004) ·Zbl 1070.17011 ·doi:10.1090/S0002-9947-03-03413-5 |
[2] | Abe, Toshiyuki; Dong, Chongying; Li, Haisheng, Fusion rules for the vertex operator algebra \(M(1)\) and \(V^+_L\), Comm. Math. Phys., 253, 1, 171-219 (2005) ·Zbl 1207.17032 ·doi:10.1007/s00220-004-1132-5 |
[3] | Bakalov, Bojko; Kirillov, Alexander, Jr., Lectures on tensor categories and modular functors, University Lecture Series 21, x+221 pp. (2001), American Mathematical Society, Providence, RI ·Zbl 0965.18002 |
[4] | Davydov, Alexei; M{\"u}ger, Michael; Nikshych, Dmitri; Ostrik, Victor, The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math., 677, 135-177 (2013) ·Zbl 1271.18008 |
[5] | Dong, Chongying; Jiao, Xiangyu; Xu, Feng, Mirror extensions of vertex operator algebras, Comm. Math. Phys., 329, 1, 263-294 (2014) ·Zbl 1295.81086 ·doi:10.1007/s00220-014-1933-0 |
[6] | Dong, Chongying; Jiao, Xiangyu; Xu, Feng, Quantum dimensions and quantum Galois theory, Trans. Amer. Math. Soc., 365, 12, 6441-6469 (2013) ·Zbl 1337.17018 ·doi:10.1090/S0002-9947-2013-05863-1 |
[7] | Dong, Chongying; Li, Haisheng; Mason, Geoffrey, Regularity of rational vertex operator algebras, Adv. Math., 132, 1, 148-166 (1997) ·Zbl 0902.17014 ·doi:10.1006/aima.1997.1681 |
[8] | Dong, Chongying; Mason, Geoffrey; Zhu, Yongchang, Discrete series of the Virasoro algebra and the moonshine module. Algebraic groups and their generalizations: quantum and infinite-dimensional methods, University Park, PA, 1991, Proc. Sympos. Pure Math. 56, 295-316 (1994), Amer. Math. Soc., Providence, RI ·Zbl 0813.17019 |
[9] | Etingof, Pavel; Nikshych, Dmitri; Ostrik, Viktor, On fusion categories, Ann. of Math. (2), 162, 2, 581-642 (2005) ·Zbl 1125.16025 ·doi:10.4007/annals.2005.162.581 |
[10] | Frenkel, I. B., Representations of affine Lie algebras, Hecke modular forms and Korteweg-de Vries type equations. Lie algebras and related topics, New Brunswick, N.J., 1981, Lecture Notes in Math. 933, 71-110 (1982), Springer, Berlin-New York ·Zbl 0505.17008 |
[11] | Frenkel, Igor B.; Huang, Yi-Zhi; Lepowsky, James, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104, 494, viii+64 pp. (1993) ·Zbl 0789.17022 ·doi:10.1090/memo/0494 |
[12] | Frenkel, Igor; Lepowsky, James; Meurman, Arne, Vertex operator algebras and the Monster, Pure and Applied Mathematics 134, liv+508 pp. (1988), Academic Press, Inc., Boston, MA ·Zbl 0674.17001 |
[13] | Frenkel, Igor B.; Zhu, Yongchang, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J., 66, 1, 123-168 (1992) ·Zbl 0848.17032 ·doi:10.1215/S0012-7094-92-06604-X |
[14] | Huang, Yi-Zhi, A theory of tensor products for module categories for a vertex operator algebra. IV, J. Pure Appl. Algebra, 100, 1-3, 173-216 (1995) ·Zbl 0841.17015 ·doi:10.1016/0022-4049(95)00050-7 |
[15] | Huang, Yi-Zhi, Virasoro vertex operator algebras, the (nonmeromorphic) operator product expansion and the tensor product theory, J. Algebra, 182, 1, 201-234 (1996) ·Zbl 0862.17022 ·doi:10.1006/jabr.1996.0168 |
[16] | Huang, Yi-Zhi, Differential equations and intertwining operators, Commun. Contemp. Math., 7, 3, 375-400 (2005) ·Zbl 1070.17012 ·doi:10.1142/S0219199705001799 |
[17] | Huang, Yi-Zhi, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math., 10, suppl. 1, 871-911 (2008) ·Zbl 1169.17019 ·doi:10.1142/S0219199708003083 |
[18] | Huang, Yi-Zhi; Kirillov, Alexander, Jr.; Lepowsky, James, Braided tensor categories and extensions of vertex operator algebras, Comm. Math. Phys., 337, 3, 1143-1159 (2015) ·Zbl 1388.17014 ·doi:10.1007/s00220-015-2292-1 |
[19] | Huang, Y.-Z.; Lepowsky, J., A theory of tensor products for module categories for a vertex operator algebra. I, Selecta Math. (N.S.), 1, 4, 699-756 (1995) ·Zbl 0854.17032 ·doi:10.1007/BF01587908 |
[20] | Huang, Y.-Z.; Lepowsky, J., A theory of tensor products for module categories for a vertex operator algebra. II, Selecta Math. (N.S.), 1, 4, 757-786 (1995) ·Zbl 0854.17032 ·doi:10.1007/BF01587908 |
[21] | Huang, Yi-Zhi; Lepowsky, James, A theory of tensor products for module categories for a vertex operator algebra. III, J. Pure Appl. Algebra, 100, 1-3, 141-171 (1995) ·Zbl 0841.17014 ·doi:10.1016/0022-4049(95)00049-3 |
[22] | Huang, Yi-Zhi; Lepowsky, James, Tensor products of modules for a vertex operator algebra and vertex tensor categories. Lie theory and geometry, Progr. Math. 123, 349-383 (1994), Birkh\"auser Boston, Boston, MA ·Zbl 0848.17031 |
[23] | Kassel, Christian, Quantum groups, Graduate Texts in Mathematics 155, xii+531 pp. (1995), Springer-Verlag, New York ·Zbl 0808.17003 ·doi:10.1007/978-1-4612-0783-2 |
[24] | Kirillov, Alexander, Jr.; Ostrik, Viktor, On a \(q\)-analogue of the McKay correspondence and the ADE classification of \(\mathfrak{sl}_2\) conformal field theories, Adv. Math., 171, 2, 183-227 (2002) ·Zbl 1024.17013 ·doi:10.1006/aima.2002.2072 |
[25] | Lepowsky, James; Li, Haisheng, Introduction to vertex operator algebras and their representations, Progress in Mathematics 227, xiv+318 pp. (2004), Birkh\"auser Boston, Inc., Boston, MA ·Zbl 1055.17001 ·doi:10.1007/978-0-8176-8186-9 |
[26] | Li, Haisheng, Some finiteness properties of regular vertex operator algebras, J. Algebra, 212, 2, 495-514 (1999) ·Zbl 0953.17017 ·doi:10.1006/jabr.1998.7654 |
[27] | M{\"u}ger, Michael, On the structure of modular categories, Proc. London Math. Soc. (3), 87, 2, 291-308 (2003) ·Zbl 1037.18005 ·doi:10.1112/S0024611503014187 |
[28] | M{\"u}ger, Michael, From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra, 180, 1-2, 159-219 (2003) ·Zbl 1033.18003 ·doi:10.1016/S0022-4049(02)00248-7 |
[29] | Nakanishi, Tomoki; Tsuchiya, Akihiro, Level-rank duality of WZW models in conformal field theory, Comm. Math. Phys., 144, 2, 351-372 (1992) ·Zbl 0751.17024 |
[30] | Ostrik, Victor, Module categories, weak Hopf algebras and modular invariants, Transform. Groups, 8, 2, 177-206 (2003) ·Zbl 1044.18004 ·doi:10.1007/s00031-003-0515-6 |
[31] | Ostrik, Victor; Sun, Michael, Level-rank duality via tensor categories, Comm. Math. Phys., 326, 1, 49-61 (2014) ·Zbl 1371.18006 ·doi:10.1007/s00220-013-1869-9 |
[32] | Xu, Feng, Mirror extensions of local nets, Comm. Math. Phys., 270, 3, 835-847 (2007) ·Zbl 1121.81111 ·doi:10.1007/s00220-006-0184-0 |
[33] | Zhu, Yongchang, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc., 9, 1, 237-302 (1996) ·Zbl 0854.17034 ·doi:10.1090/S0894-0347-96-00182-8 |