Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Generalizations of Capparelli’s identity.(English)Zbl 1430.11144

The Capparelli identity states that the number of partitions of \(n\) into parts greater than \(1\) such that parts differ by at least \(2\), and at least \(4\) unless consecutive parts add up to a multiple of \(3\) is the same as the number of partitions of \(n\) into distinct parts not congruent to \(\pm 1\) modulo \(6\). One of the extensions of this identity is due to Alladi, Andrews and Gordon [K. Alladi et al., J. Algebra 174, No. 2, 636–658 (1995;Zbl 0830.05005)], in which tricolored partitions under certain difference conditions were considered. In the paper under review, the authors make use of jagged overpartitions to obtain three generalizations of the extension of Capparelli’s identity due to Alladi, Andrews and Gordon [loc. cit.]. Several corollaries of the three generalizations are also presented.

MSC:

11P84 Partition identities; identities of Rogers-Ramanujan type
05A17 Combinatorial aspects of partitions of integers
05A30 \(q\)-calculus and related topics

Citations:

Zbl 0830.05005

Cite

References:

[1]Alladi, K.; Andrews, G. E.; Gordon, B., Refinements and generalizations of Capparelli’s conjecture on partitions, J. Algebra, 174, 636-658, 1995 ·Zbl 0830.05005
[2]Andrews, G. E., Schur’s theorem, Capparelli’s conjecture and \(q\)‐trinomial coefficients, Contemp. Math., 166, 141-154, 1992 ·Zbl 0811.05001
[3]Berkovich, A.; Uncu, A.‐K., A new companion to Capparelli’s identities, Adv. in Appl. Math., 71, 125-137, 2015 ·Zbl 1322.05016
[4]Bringmann, K.; Mahlburg, K., False theta functions and companions to Capparelli’s identities, Adv. Math., 278, 121-136, 2015 ·Zbl 1311.05016
[5]Capparelli, S., On some representations of twisted affine Lie algebras and combinatorial identities, J. Algebra, 154, 335-355, 1993 ·Zbl 0774.17029
[6]Capparelli, S., A construction of the level 3 modules for the affine Lie algebra \(A_2^{( 2 )}\) and a new combinatorial identity of the Rogers-Ramanujan type, Trans. Amer. Math. Soc., 348, 481-501, 1996 ·Zbl 0862.17017
[7]Fortin, J.‐F.; Jacob, P.; Mathieu, P., Jagged partitions, Ramanujan J., 10, 215-235, 2005 ·Zbl 1079.05003
[8]Fu, S.; Zeng, J., A unifying combinatorial approach to refined little Göllnitz and Capparelli’s companion identities, Adv. in Appl. Math., 98, 127-154, 2018 ·Zbl 1436.11123
[9]Gasper, G.; Rahman, M., Basic hypergeometric series. 2nd edn, 2004, Cambridge University Press: Cambridge ·Zbl 1129.33005
[10]Lepowsky, J.; Wilson, R., The structure of standard modules, I: universal algebras and the Rogers-Ramanujan identities, Invent. Math., 77, 199-290, 1984 ·Zbl 0577.17009
[11]Lovejoy, J., A theorem on seven‐colored overpartitions and its applications, Int. J. Number Theory, 1, 215-224, 2005 ·Zbl 1087.11063
[12]Lovejoy, J., Constant terms, jagged partitions, and partitions with difference two at distance two, Aequationes Math., 72, 299-312, 2006 ·Zbl 1125.11056
[13]Lovejoy, J., Asymmetric generalizations of Schur’s theorem, Analytic number theory, modular forms, and \(q\)‐hypergeometric series, 2017, Springer: Cham ·Zbl 1416.11148
[14]Meurman, A.; Primc, M., Annihilating ideals of standard modules of \(\operatorname{ sl } ( 2 , \mathbb{C} )^\sim\) and combinatorial identities, Adv. Math., 64, 177-240, 1987 ·Zbl 0635.17006
[15]Primc, M., Some crystal Rogers-Ramanujan type identities, Glas. Mat. Ser., 34, 73-86, 1999 ·Zbl 0989.17017
[16]Rogers, L. J.; Ramanujan, S., Proof of certain identities in combinatory analysis, Cambr. Phil. Soc. Proc., 19, 211-216, 1919 ·JFM 47.0903.01
[17]Siladić, I., Twisted \(\operatorname{ sl } ( 3 , \mathbb{C} )^\sim \)‐modules and combinatorial identities, Glas. Mat. Ser., 52, 53-77, 2017 ·Zbl 1417.17026
[18]Sills, A. V., On series expansions of Capparelli’s infinite product, Adv. in Appl. Math., 33, 397-408, 2004 ·Zbl 1160.11355
[19]Tamba, M.; Xie, C., Level three standard modules for \(A_2^{( 2 )}\) and combinatorial identities, J. Pure Appl. Algebra, 105, 53-92, 1995 ·Zbl 0854.17029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp