Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

Generalized Fibonacci numbers of the form \(11x^2 + 1\).(English)Zbl 1430.11025

Summary: Let \(P \geq 3\) be an integer and let \((U_n)\) denote generalized Fibonacci sequence defined by \(U_0=0, U_1=1\) and \(U_{n+1}=P U_n - U_{n-1}\) for \(n\geq1\). In this study, when \(P\) is odd, we solve the equation \(U_n=11x^2+1\). We show that only \(U_1\) and \(U_2\) may be of the form \(11x^2+1\).

MSC:

11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11A07 Congruences; primitive roots; residue systems
11D09 Quadratic and bilinear Diophantine equations

Cite

References:

[1]M. A. Alekseyev and S. Tengely, On integral points on biquadratic curves and near-multiples of squares in Lucas sequences, J. Integer Seq. 17 , no. 6, Article ID 14.6.6, (2014). ·Zbl 1358.11141
[2]M. A. Bennett, S. Dahmen, M. Mignotte, S. Siksek, Shifted powers in binary recurrence sequences, Math. Proc. Cambridge Philos. Soc. 158(2), (2015), 305- 329. ·Zbl 1371.11081
[3]Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Fibonacci numbers at most one away from a perfect power, Elem. Math. 63(2), (2008), 65-75. ·Zbl 1156.11008
[4]Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Almost powers in the Lucas sequence, J. Th´eor. Nombres Bordeaux, 20(3), (2008), 555-600. ·Zbl 1204.11030
[5]Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. 163(3), (2006), 969-1018. ·Zbl 1113.11021
[6]J. H. E. Cohn, Squares in some recurrent sequences, Pacific Journal of Mathematics, 41 (1972), 631-646. ·Zbl 0248.10016
[7]O. Karaatlı and R. Keskin, Generalized Lucas Numbers of the form 5kx2and 7kx2, Bulletin of the Korean Mathematical Society, 52 (2014) 1467-1480. ·Zbl 1395.11032
[8]R. Keskin, Generalized Fibonacci and Lucas Numbers of the form wx2and wx2∓ 1, Bulletin of the Korean Mathematical Society, 51 (2014) 1041-1054. ·Zbl 1375.11016
[9]M. G. Duman and ¨U. ¨O˘g¨ut and R. Keskin, Generalized Lucas Numbers of the form wx2and wkx2, Hokkaido Mathematical Journal, (accepted).
[10]R, Keskin and ¨U. ¨O˘g¨ut, Generalized Fibonacci Numbers of the form wx2+ 1, Period. Math. Hung. (73) (2016), 165-178. ·Zbl 1399.11044
[11]W. L. McDaniel, The g.c.d. in Lucas sequences and Lehmer number sequences, The Fibonacci Quarterly, 29 (1991), 24-30. ·Zbl 0732.11008
[12]P. Ribenboim and W. L. McDaniel, The square terms in Lucas sequences, Journal of Number Theory, 58 (1996), 104-123. ·Zbl 0851.11011
[13]P. Ribenboim and W. L. McDaniel, Squares in Lucas sequences having an even GENERALIZED FIBONACCI NUMBERS OF THE FORM 11x2+ 1153
[14]P. Ribenboim and W. L. McDaniel, On Lucas sequence terms of the form kx2, Number Theory: proceedings of the Turku symposium on Number Theory in memory of Kustaa Inkeri (Turku, 1999), de Gruyter, Berlin, 2001, 293-303. ·Zbl 0962.11010
[15]Z. S¸iar and R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics, 42(3) (2013), 211-222. ·Zbl 1298.11016
[16]Z. S¸iar and R. Keskin, The square terms in Generalized Fibonacci Sequence, Mathematika, 60 (2014), 85-100. ·Zbl 1372.11018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp