[1] | M. A. Alekseyev and S. Tengely, On integral points on biquadratic curves and near-multiples of squares in Lucas sequences, J. Integer Seq. 17 , no. 6, Article ID 14.6.6, (2014). ·Zbl 1358.11141 |
[2] | M. A. Bennett, S. Dahmen, M. Mignotte, S. Siksek, Shifted powers in binary recurrence sequences, Math. Proc. Cambridge Philos. Soc. 158(2), (2015), 305- 329. ·Zbl 1371.11081 |
[3] | Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Fibonacci numbers at most one away from a perfect power, Elem. Math. 63(2), (2008), 65-75. ·Zbl 1156.11008 |
[4] | Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Almost powers in the Lucas sequence, J. Th´eor. Nombres Bordeaux, 20(3), (2008), 555-600. ·Zbl 1204.11030 |
[5] | Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. 163(3), (2006), 969-1018. ·Zbl 1113.11021 |
[6] | J. H. E. Cohn, Squares in some recurrent sequences, Pacific Journal of Mathematics, 41 (1972), 631-646. ·Zbl 0248.10016 |
[7] | O. Karaatlı and R. Keskin, Generalized Lucas Numbers of the form 5kx2and 7kx2, Bulletin of the Korean Mathematical Society, 52 (2014) 1467-1480. ·Zbl 1395.11032 |
[8] | R. Keskin, Generalized Fibonacci and Lucas Numbers of the form wx2and wx2∓ 1, Bulletin of the Korean Mathematical Society, 51 (2014) 1041-1054. ·Zbl 1375.11016 |
[9] | M. G. Duman and ¨U. ¨O˘g¨ut and R. Keskin, Generalized Lucas Numbers of the form wx2and wkx2, Hokkaido Mathematical Journal, (accepted). |
[10] | R, Keskin and ¨U. ¨O˘g¨ut, Generalized Fibonacci Numbers of the form wx2+ 1, Period. Math. Hung. (73) (2016), 165-178. ·Zbl 1399.11044 |
[11] | W. L. McDaniel, The g.c.d. in Lucas sequences and Lehmer number sequences, The Fibonacci Quarterly, 29 (1991), 24-30. ·Zbl 0732.11008 |
[12] | P. Ribenboim and W. L. McDaniel, The square terms in Lucas sequences, Journal of Number Theory, 58 (1996), 104-123. ·Zbl 0851.11011 |
[13] | P. Ribenboim and W. L. McDaniel, Squares in Lucas sequences having an even GENERALIZED FIBONACCI NUMBERS OF THE FORM 11x2+ 1153 |
[14] | P. Ribenboim and W. L. McDaniel, On Lucas sequence terms of the form kx2, Number Theory: proceedings of the Turku symposium on Number Theory in memory of Kustaa Inkeri (Turku, 1999), de Gruyter, Berlin, 2001, 293-303. ·Zbl 0962.11010 |
[15] | Z. S¸iar and R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics, 42(3) (2013), 211-222. ·Zbl 1298.11016 |
[16] | Z. S¸iar and R. Keskin, The square terms in Generalized Fibonacci Sequence, Mathematika, 60 (2014), 85-100. ·Zbl 1372.11018 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.