Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Dimension of random limsup sets.(English)Zbl 1429.28012

Let \(\omega_0, \omega_1, \ldots\) be independent uniform random points in \([0,1]^d\), for a positive integer \(d\). For a sequence \(r_0, r_1, \ldots\)of positive real numbers, consider the random set\[ E = \bigcap_{m \geq 0} \bigcup_{n \geq m} B (\omega_n, r_n ) ,\]where \(B(x,r)\) is the Euclidean \(d\)-ball with centre \(x\) and radius \(r\). Set \(t_0 = \inf \{ t \geq 0 : \sum_{n \geq 0} r_n^t < \infty \}\).A known theorem states that the Hausdorff dimension of \(E\) is equal to \(\min ( t_0, d)\), almost surely,a result obtained for \(d=1\) byA.-H. Fan andJ. Wu [Ann. Inst. Henri Poincaré, Probab. Stat. 40, No. 1, 125–131 (2004;Zbl 1037.60010)] and which can be derived for general \(d\) by an argument ofA. Durand et al. [“On randomly placed arcs on the circle”, in: Recent developments in fractals and related fields. Boston, MA: Birkhäuser. 343–351 (2010)].In the paper under review, the author gives a new proof of this theorem.

MSC:

28A80 Fractals
60D05 Geometric probability and stochastic geometry

Citations:

Zbl 1037.60010

Cite

References:

[1]Beresnevich, V.; Velani, S., A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. Math. (2), 164, 3, 971-992 (2006) ·Zbl 1148.11033 ·doi:10.4007/annals.2006.164.971
[2]Besicovitch, A., Sets of fractional dimension (IV): on rational approximation to real numbers, J. Lond. Math. Soc., 9, 126-131 (1934) ·Zbl 0009.05301 ·doi:10.1112/jlms/s1-9.2.126
[3]Durand, A.; Barral, J.; Seuret, S., Recent Developments in Fractals and Related Fields, On randomly placed arcs on the circle, 343-351 (2010), Boston, MA: Birkhäuser, Boston, MA
[4]Ekström, F.; Järvenpää, E.; Järvenpää, M.; Suomala, V., Hausdorff dimension of limsup sets of random rectangles in products of regular spaces, Proc. Amer. Math. Soc., 146, 2509-2521 (2018) ·Zbl 1386.60043 ·doi:10.1090/proc/13920
[5]Falconer, K., Sets with large intersection properties, J. Lond. Math. Soc., 49, 2, 267-280 (1994) ·Zbl 0798.28004 ·doi:10.1112/jlms/49.2.267
[6]Fan, A.-H.; Schmeling, J.; Troubetzkoy, S., A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation, Proc. Lond. Math. Soc., 107, 5, 1173-1219 (2013) ·Zbl 1347.37023 ·doi:10.1112/plms/pdt005
[7]Fan, A.-H.; Wu, J., On the covering by small random intervals, Ann. Inst. Henri Poincaré Probab. Stat., 40, 1, 125-131 (2004) ·Zbl 1037.60010 ·doi:10.1016/S0246-0203(03)00056-6
[8]Feng, D. J.; Järvenpää, E.; Järvenpää, M.; Suomala, V., Dimensions of random covering sets in Riemann manifolds, Ann. Probab., 46, 3, 1542-1596 (2018) ·Zbl 1429.60019 ·doi:10.1214/17-AOP1210
[9]Hill, R.; Velani, S., The ergodic theory of shrinking targets, Invent. Math., 119, 1, 175-198 (1995) ·Zbl 0834.28009 ·doi:10.1007/BF01245179
[10]Jarník, V., Diophantischen Approximationen und Hausdorffsches Mass, Mat. Sb., 36, 3-4, 371-382 (1929) ·JFM 55.0719.01
[11]Järvenpää, E.; Järvenpää, M.; Koivusalo, H.; Li, B.; Suomala, V., Hausdorff dimension of affine random covering sets in torus, Ann. Inst. Henri Poincaré Probab. Stat., 50, 4, 1371-1384 (2014) ·Zbl 1319.60016 ·doi:10.1214/13-AIHP556
[12]Järvenpää, E.; Järvenpää, M.; Koivusalo, H.; Li, B.; Suomala, V.; Xiao, Y., Hitting probabilities of random covering sets in tori and metric spaces, Electron. J. Probab., 22, 1, 1-18 (2017) ·Zbl 1395.60014 ·doi:10.1214/16-EJP4658
[13]Persson, T., A note on random coverings of tori, Bull. Lond. Math. Soc., 47, 1, 7-12 (2015) ·Zbl 1320.60036 ·doi:10.1112/blms/bdu087
[14]Seuret, S., Inhomogeneous random coverings of topological Markov shifts, Math. Proc. Cambridge Philos. Soc., 165, 2, 341-357 (2018) ·Zbl 1396.28021 ·doi:10.1017/S0305004117000512
[15]Zhang, L., Hausdorff dimension of limsup random fractals, Electron. J. Probab., 18, 39, 1-26 (2012) ·Zbl 1287.60018 ·doi:10.1214/EJP.v18-2273
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp