[1] | S. Verma, K. Aziz, A control volume scheme for flexible grids in reservoir simulation, in: SPE 37999, 14th SPE Reservoir Simulation, Symposium Dallas, TX, USA, 8-11 June, 1997.; S. Verma, K. Aziz, A control volume scheme for flexible grids in reservoir simulation, in: SPE 37999, 14th SPE Reservoir Simulation, Symposium Dallas, TX, USA, 8-11 June, 1997. |
[2] | Aavatsmark, I.; Barkve, T.; Bøe, Ø.; Mannseth, T., Discretization on unstructured grids for inhomogenous, anisotropic media. Part I: Derivation of the methods, SIAM Journal on Scientific Computing, 19, 5, 1700-1716 (1998) ·Zbl 0951.65080 |
[3] | Edwards, M. G., M-matrix flux splitting for general full tensor discretization operators on structured and unstructured grids, Journal of Computational Physics, 160, 1-28 (2000) ·Zbl 0983.76055 |
[4] | Edwards, M. G., Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids, Computational Geosciences, 6, 3-4, 433-452 (2002) ·Zbl 1036.76034 |
[5] | Pal, M.; Edwards, M. G.; Lamb, A. R., Convergence study of a family of flux continuous, finite volume schemes for the general tensor pressure equation, International Journal for Numerical Methods in Fluids, 51, 1177-1203 (2006) ·Zbl 1108.76046 |
[6] | Lee, S.; Jenny, P.; Tchelepi, H., A finite-volume method with hexahedral multiblock grids for modeling flow in porous media, Computational Geosciences, 6, 353-379 (2002) ·Zbl 1094.76541 |
[7] | Le Potier, C., Finite volume scheme for highly anisotropic diffusion operators on unstructured meshes, Comptes Rendus Mathématique. Académie des Sciences, Paris Series I, 340, 12, 921-926 (2005) ·Zbl 1076.76049 |
[8] | Eymard, R.; Gallout, T.; Herbin, R., A cell centered finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA Journal on Numerical Analysis, 26, 2, 326-353 (2006) ·Zbl 1093.65110 |
[9] | Eymard, R.; Gallout, T.; Herbin, R., A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis, Comptes Rendus Mathématique. Académie des Sciences, Paris Series I, 344, 6, 403-406 (2007) ·Zbl 1112.65120 |
[10] | Friis, H. A.; Edwards, M. G.; Mykkeltveit, J., Symmetric positive definite flux-continuous full-tensor finite-volume schemes on unstructured cell centered triangular grids, SIAM Journal on Scientific Computing, 31, 1192-1220 (2008) ·Zbl 1190.65163 |
[11] | Aavatsmark, I., An introduction to multi point flux approximations for quadrilateral grids, Computational Geosciences, 6, 3-4, 405-432 (2002) ·Zbl 1094.76550 |
[12] | Arbogast, T.; Wheeler, M. F.; Yotov, I., Mixed finite elements for elliptic problems with tensor coefficients as cell centered finite differences, SIAM Journal on Numerical Analysis, 34, 2, 828-852 (1997) ·Zbl 0880.65084 |
[13] | Arbogast, T.; Dawson, C. N.; Keenan, P.; Wheeler, M. F.; Yotov, I., Enhanced cell-centered finite differences for elliptic equations on general geometry, SIAM Journal on Scientific Computing, 19, 2, 404-425 (1998) ·Zbl 0947.65114 |
[14] | Cai, Z.; Jones, J. E.; McCormick, S. F.; Russell, T. F., Control-volume mixed finite element methods, Computational Geosciences, 1, 289-315 (1997) ·Zbl 0941.76050 |
[15] | Hyman, J.; Shashkov, M.; Steinberg, S., The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, Journal of Computational Physics, 132, 130-148 (1997) ·Zbl 0881.65093 |
[16] | Hermeline, F., Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Computer Methods in Applied Mechanics and Engineering, 192, 16-18, 1939-1959 (2003) ·Zbl 1037.65118 |
[17] | Hermeline, F., Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes, Computer Methods in Applied Mechanics and Engineering, 196, 21-24, 2497-2526 (2007) ·Zbl 1173.76362 |
[18] | Klausen, R. A.; Winther, R., Convergence of multipoint flux approximations on quadrilateral grids, Numerical Methods for Partial Differential Equations, 22, 6, 1438-1454 (2006) ·Zbl 1106.76043 |
[19] | Edwards, M. G.; Pal, M., Positive definite q-families of continuous subcell darcy-flux CVD(MPFA) finite volume schemes and the mixed finite element method, International Journal for Numerical Methods in Fluids, 57, 4, 355-387 (2008) ·Zbl 1236.76035 |
[20] | Wheeler, M.; Yotov, I., A multipoint flux mixed finite element method, SIAM Journal on Numerical Analysis, 44, 2082-2106 (2006) ·Zbl 1121.76040 |
[21] | Russell, T. F., Relationships among some conservative discretisation methods, (Chen; Ewing; Shi, Lecture Notes in Physics (1999), Springer: Springer Berlin), 1-16 |
[22] | Edwards, M. G., Higher-resolution hyperbolic – coupled – elliptic flux-continuous cvd schemes on structured and unstructured grids in 2-d, International Journal for Numerical Methods in Fluids, 51, 1059-1077 (2006) ·Zbl 1158.76363 |
[23] | Lamine, S.; Edwards, M. G., Higher resolution convection schemes for flow in porous media on highly distorted unstructured grids, International Journal for Numerical Methods in Engineering, 76, 1139-1158 (2008) ·Zbl 1195.76266 |
[24] | Lamine, S.; Edwards, M. G., Higher order multidimensional upwind convection schemes for flow in porous media on structured and unstructured quadrilateral grids, SIAM Journal on Scientific Computing, 32, 3, 1119-1139 (2010) ·Zbl 1217.35010 |
[25] | Edwards, M. G.; Rogers, C. F., Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Computational Geosciences, 2, 259-290 (1998) ·Zbl 0945.76049 |
[26] | Eigestad, G. T.; Klausen, R. A., On convergence of multi-point flux approximation o-method; numerical experiment for discontinuous permeability, Numerical Methods for Partial Differential Equations, 21, 6, 1079-1098 (2005) ·Zbl 1089.76037 |
[27] | M.G. Edwards, Symmetric positive definite general tensor discretization operators on unstructured and flow based grids, in: 8th European Conference on the Mathematics of Oil Recovery, Freiberg, Germany September, 2002.; M.G. Edwards, Symmetric positive definite general tensor discretization operators on unstructured and flow based grids, in: 8th European Conference on the Mathematics of Oil Recovery, Freiberg, Germany September, 2002. |
[28] | Edwards, M. G.; Zheng, H., A quasi-positive family of continuous darcy-flux finite volume schemes with full pressure support, Journal of Computational Physics, 227, 9333-9364 (2008) ·Zbl 1231.76178 |
[29] | Edwards, M. G.; Zheng, H., Quasi-positive families of continuous darcy-flux finite volume schemes on structured and unstructured grids, Journal of Computational and Applied Mathematics, 234, 7, 2152-2161 (2010) ·Zbl 1402.76078 |
[30] | Edwards, M. G.; Zheng, H., Double-families of quasi-positive darcy-flux approximations with highly anisotropic tensors on structured and unstructured grids, Journal of Computational Physics, 229, 594-625 (2010) ·Zbl 1253.76091 |
[31] | M. Pal, M.G. Edwards, Family of Flux-Continuous Finite-Volume Schemes with Improved Monotonicity, in: Proceedings of the 10th European Conference on the Mathematics of Oil Recovery, 4th-7th September 2006, paper B009, ISBN:90-73781-47-7.; M. Pal, M.G. Edwards, Family of Flux-Continuous Finite-Volume Schemes with Improved Monotonicity, in: Proceedings of the 10th European Conference on the Mathematics of Oil Recovery, 4th-7th September 2006, paper B009, ISBN:90-73781-47-7. |
[32] | M. Pal, M.G. Edwards, Flux-Splitting Schemes for improved monotonicity of discrete solution of elliptic equation with highly anisotropic coefficients, in: Proceedings, ECCOMAS CFD-2006 Conference, Egmond aan Zee, The Netherlands, 5th-8th September, 2006, paper 384, ISBN:90-9020970-0.; M. Pal, M.G. Edwards, Flux-Splitting Schemes for improved monotonicity of discrete solution of elliptic equation with highly anisotropic coefficients, in: Proceedings, ECCOMAS CFD-2006 Conference, Egmond aan Zee, The Netherlands, 5th-8th September, 2006, paper 384, ISBN:90-9020970-0. |
[33] | M. Pal, M.G. Edwards, Non-linear flux-splitting schemes with imposed discrete maximum principle for elliptic equations with highly anisotropic coefficients, International Journal for Numerical Methods in Fluids (2010) doi:10.1002/fld.2258; M. Pal, M.G. Edwards, Non-linear flux-splitting schemes with imposed discrete maximum principle for elliptic equations with highly anisotropic coefficients, International Journal for Numerical Methods in Fluids (2010) doi:10.1002/fld.2258 ·Zbl 1301.86002 |
[34] | Lipnikov, D. S.K.; Shashkov, M.; Svyatskiy, D.; Vassilevski, Y., Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, Journal of Computational Physics, 227, 492-512 (2008) ·Zbl 1130.65113 |
[35] | Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Elements Methods, Springer Series in Computational Mathematics, vol. 15 (1991), Springer-Verlag ·Zbl 0788.73002 |
[36] | Axelsson, O., Iterative Solution Methods (1994), Cambridge University Press ·Zbl 0795.65014 |
[37] | M. Pal, M.G. Edwards, Quasi-Monotonic Continuous Darcy-Flux Approximation for General 3-D Grids of any Element Type, in: Proceedings, SPE Reservoir Simulation Symposium Houston, Texas, U.S.A., 26-28 February 2007, paper SPE106486, doi:10.2118/106486-MS; M. Pal, M.G. Edwards, Quasi-Monotonic Continuous Darcy-Flux Approximation for General 3-D Grids of any Element Type, in: Proceedings, SPE Reservoir Simulation Symposium Houston, Texas, U.S.A., 26-28 February 2007, paper SPE106486, doi:10.2118/106486-MS |
[38] | Friis, H. A.; Johansen, T. A.; Haveraaen, M.; Munthe-Kaas, H.; Drottning, Å., Use of coordinate-free numerics in elastic wave simulation, Applied Numerical Mathematics, 39, 2, 151-171 (2001) ·Zbl 1088.74521 |
[39] | Haveraaen, M.; Friis, H. A.; Munthe-Kaas, H., Computable scalar fields: A basis for PDE software, Journal of Logic and Algebraic Programming, 65, 1, 36-49 (2005) ·Zbl 1094.65124 |
[40] | Haveraaen, M.; Friis, H. A., Coordinate-free numerics: All your variation points for free?, International Journal of Computational Science and Engineering, 4, 4, 223-230 (2009) |
[41] | Keller, J. B., A theorem on the conductivity of a composite medium, Journal of Mathematical Physics, 5, 4, 548-549 (1964) ·Zbl 0129.44001 |
[42] | Durlofsky, L. J., Numerical calculation of equivalent grid block permeability tensors for heterogenous media, Water Resources Research, 27, 5, 699-708 (1991) |
[43] | Bergren, A. M.S. A.; Lukkassen, D.; Simula, L., A new method for numerical solution of checkerboard fields, Journal of Applied Mathematics, 1, 157-173 (2001) ·Zbl 1094.74675 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.