[1] | Athreya, Jayadev S.; Margulis, Gregory A., Logarithm laws for unipotent flows. I, J. Mod. Dyn., 3, 3, 359-378 (2009) ·Zbl 1184.37007 ·doi:10.3934/jmd.2009.3.359 |
[2] | Athreya, Jayadev S.; Margulis, Gregory A., Logarithm laws for unipotent flows, II, J. Mod. Dyn., 11, 1-16 (2017) ·Zbl 1402.37003 ·doi:10.3934/jmd.2017001 |
[3] | Blomer, Valentin; Brumley, Farrell, On the Ramanujan conjecture over number fields, Ann. of Math. (2), 174, 1, 581-605 (2011) ·Zbl 1322.11039 ·doi:10.4007/annals.2011.174.1.18 |
[4] | Bergeron, Nicolas; Clozel, Laurent, Quelques cons\'{e}quences des travaux d’Arthur pour le spectre et la topologie des vari\'{e}t\'{e}s hyperboliques, Invent. Math., 192, 3, 505-532 (2013) ·Zbl 1309.22014 ·doi:10.1007/s00222-012-0415-2 |
[5] | Bergeron, Nicolas; Clozel, Laurent, Sur le spectre et la topologie des vari\'{e}t\'{e}s hyperboliques de congruence: Les cas complexe et quaternionien, Math. Ann., 368, 3-4, 1333-1358 (2017) ·Zbl 1385.53025 ·doi:10.1007/s00208-016-1492-0 |
[6] | Burger, M.; Sarnak, P., Ramanujan duals. II, Invent. Math., 106, 1, 1-11 (1991) ·Zbl 0774.11021 ·doi:10.1007/BF01243900 |
[7] | Chernov, N.; Kleinbock, D., Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math., 122, 1-27 (2001) ·Zbl 0997.37002 ·doi:10.1007/BF02809888 |
[8] | Dolgopyat, Dmitry, Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc., 356, 4, 1637-1689 (2004) ·Zbl 1031.37031 ·doi:10.1090/S0002-9947-03-03335-X |
[9] | Galatolo, Stefano, Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14, 5, 797-805 (2007) ·Zbl 1134.37004 ·doi:10.4310/MRL.2007.v14.n5.a8 |
[10] | Galatolo, Stefano; Kim, Dong Han, The dynamical Borel-Cantelli lemma and the waiting time problems, Indag. Math. (N.S.), 18, 3, 421-434 (2007) ·Zbl 1134.37002 ·doi:10.1016/S0019-3577(07)80031-0 |
[11] | Ghosh, Anish; Kelmer, Dubi, Shrinking targets for semisimple groups, Bull. Lond. Math. Soc., 49, 2, 235-245 (2017) ·Zbl 1437.11053 ·doi:10.1112/blms.12023 |
[12] | Gorodnik, Alexander; Shah, Nimish A., Khinchin’s theorem for approximation by integral points on quadratic varieties, Math. Ann., 350, 2, 357-380 (2011) ·Zbl 1260.11049 ·doi:10.1007/s00208-010-0561-z |
[13] | Gangolli, Ramesh; Varadarajan, V. S., Harmonic analysis of spherical functions on real reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas] 101, xiv+365 pp. (1988), Springer-Verlag, Berlin ·Zbl 0675.43004 ·doi:10.1007/978-3-642-72956-0 |
[14] | Helgason, Sigurdur, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics 80, xv+628 pp. (1978), Academic Press, Inc. [Harcourt Brace Jovanovich Publishers], New York\textendash London ·Zbl 0451.53038 |
[15] | Howe, Roger, On a notion of rank for unitary representations of the classical groups. Harmonic analysis and group representations, 223-331 (1982), Liguori, Naples |
[16] | Hersonsky, Sa’ar; Paulin, Fr\'{e}d\'{e}ric, On the almost sure spiraling of geodesics in negatively curved manifolds, J. Differential Geom., 85, 2, 271-314 (2010) ·Zbl 1229.53050 |
[17] | Kelmer, Dubi, Shrinking targets for discrete time flows on hyperbolic manifolds, Geom. Funct. Anal., 27, 5, 1257-1287 (2017) ·Zbl 1380.37005 ·doi:10.1007/s00039-017-0421-z |
[18] | Kleinbock, D. Y.; Margulis, G. A., Bounded orbits of nonquasiunipotent flows on homogeneous spaces. Sina\u{\i}’s Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2 171, 141-172 (1996), Amer. Math. Soc., Providence, RI ·Zbl 0843.22027 ·doi:10.1090/trans2/171/11 |
[19] | Kleinbock, D. Y.; Margulis, G. A., Logarithm laws for flows on homogeneous spaces, Invent. Math., 138, 3, 451-494 (1999) ·Zbl 0934.22016 ·doi:10.1007/s002220050350 |
[20] | Kelmer, Dubi; Mohammadi, Amir, Logarithm laws for one parameter unipotent flows, Geom. Funct. Anal., 22, 3, 756-784 (2012) ·Zbl 1260.37003 ·doi:10.1007/s00039-012-0181-8 |
[21] | Knapp, Anthony W., Lie groups beyond an introduction, Progress in Mathematics 140, xviii+812 pp. (2002), Birkh\"{a}user Boston, Inc., Boston, MA ·Zbl 1075.22501 |
[22] | Kostant, Bertram, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc., 75, 627-642 (1969) ·Zbl 0229.22026 ·doi:10.1090/S0002-9904-1969-12235-4 |
[23] | Kim, Henry H., Functoriality for the exterior square of \({\rm GL}_4\) and the symmetric fourth of \({\rm GL}_2\), J. Amer. Math. Soc., 16, 1, 139-183 (2003) ·Zbl 1018.11024 ·doi:10.1090/S0894-0347-02-00410-1 |
[24] | D. Kleinbock and N. Wadleigh, An inhomogeneous Dirichlet theorem via shrinking targets, arXiv:1709.04082 (2017). ·Zbl 1429.11124 |
[25] | Kleinbock, Dmitry; Zhao, Xi, An application of lattice points counting to shrinking target problems, Discrete Contin. Dyn. Syst., 38, 1, 155-168 (2018) ·Zbl 1372.37067 ·doi:10.3934/dcds.2018007 |
[26] | Maucourant, Fran\c{c}ois, Dynamical Borel-Cantelli lemma for hyperbolic spaces, Israel J. Math., 152, 143-155 (2006) ·Zbl 1129.53057 ·doi:10.1007/BF02771980 |
[27] | Oh, Hee, Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Soc. Math. France, 126, 3, 355-380 (1998) ·Zbl 0917.22008 |
[28] | Oh, Hee, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., 113, 1, 133-192 (2002) ·Zbl 1011.22007 ·doi:10.1215/S0012-7094-02-11314-3 |
[29] | Raghunathan, M. S., The congruence subgroup problem, Proc. Indian Acad. Sci. Math. Sci., 114, 4, 299-308 (2004) ·Zbl 1086.20024 ·doi:10.1007/BF02829437 |
[30] | Rapinchuk, A. S., Congruence subgroup problem for algebraic groups: Old and new, Ast\'{e}risque, 209, 11, 73-84 (1992) ·Zbl 0805.20040 |
[31] | Sarnak, Peter, Notes on the generalized Ramanujan conjectures. Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. 4, 659-685 (2005), Amer. Math. Soc., Providence, RI ·Zbl 1146.11031 |
[32] | Shahidi, Freydoon, On the Ramanujan conjecture for quasisplit groups, Asian J. Math., 8, 4, 813-835 (2004) ·Zbl 1077.22023 |
[33] | Sprind\v{z}uk, Vladimir G., Metric theory of Diophantine approximations, Scripta Series in Mathematics, xiii+156 pp. (1979), V. H. Winston & Sons, Washington, D.C.; A Halsted Press Book, John Wiley & Sons, New York\textendash Toronto, Ont.\textendash London ·Zbl 0482.10047 |
[34] | Sullivan, Dennis, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., 149, 3-4, 215-237 (1982) ·Zbl 0517.58028 ·doi:10.1007/BF02392354 |
[35] | Yu, Shucheng, Logarithm laws for unipotent flows on hyperbolic manifolds, J. Mod. Dyn., 11, 447-476 (2017) ·Zbl 1402.37004 ·doi:10.3934/jmd.2017018 |