Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

Representations of reciprocals of Lucas sequences.(English)Zbl 1424.11076

Summary:F. Stancliff, [“A curious property of \(a_{ii}\)”, Scripta Math. 19, p. 126 (1953)] noted an interesting property of the Fibonacci number \(F_{11}=89.\) One has that \[\frac{1}{89}=\frac{F_0}{10}+\frac{F_1}{10^2}+\frac{F_2}{10^3}+\frac{F_3}{10^4}+\frac{F_4}{10^5}+\frac{F_5}{10^6}+\cdots.\]B. M. M. de Weger [Rocky Mt. J. Math. 25, No. 3, 977–994 (1995;Zbl 0852.11012)] determined a complete list of similar identities in case of the Fibonacci sequence, the solutions are as follows \[\frac{1}{F_1}=\frac{1}{F_2}=\frac{1}{1}=\sum_{k=1}^{\infty}\frac{F_{k-1}}{2^k},\;\;\frac{1}{F_5}=\frac{1}{5}=\sum_{k=1}^{\infty}\frac{F_{k-1}}{3^k},\] \[\frac{1}{F_{10}}=\frac{1}{55}=\sum_{k=1}^{\infty}\frac{F_{k-1}}{8^k},\;\; \frac{1}{F_{11}}=\frac{1}{89}=\sum_{k=1}^{\infty}\frac{F_{k-1}}{10^k}.\] In this article we study similar problems in case of general Lucas sequences \(U_n(P,Q)\). We deal with equations of the form \[\frac{1}{U_n(P_2,Q_2)}=\sum_{k=1}^{\infty}\frac{U_{k-1}(P_1,Q_1)}{x^k},\] for certain pairs \((P_1,Q_1)\neq(P_2,Q_2).\) We also consider equations of the form \[\sum_{k=1}^{\infty}\frac{U_{k-1}(P,Q)}{x^k}=\sum_{k=1}^{\infty}\frac{R_{k-1}}{y^k},\] where \(R_n\) is a ternary linear recurrence sequence. The proofs are based on results related to Thue equations and elliptic curves.

MSC:

11D25 Cubic and quartic Diophantine equations
11B39 Fibonacci and Lucas numbers and polynomials and generalizations

Citations:

Zbl 0852.11012

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp