[1] | Andrews, G.E.: The number of smallest parts in the partitions of \[n\] n. J. Reine Angew. Math. 624, 133-142 (2008) ·Zbl 1153.11053 |
[2] | Andrews, G.E., Garvan, F.G.: Dyson’s crank of a partition. Bull. Am. Math. Soc. (N.S.) 18, 167-171 (1988) ·Zbl 0646.10008 ·doi:10.1090/S0273-0979-1988-15637-6 |
[3] | Andrews, G.E., Askey, R., Roy, R.: Special Functions, Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2001) |
[4] | Andrews, G.E., Chan, S.H., Kim, B.: The odd moments of ranks and cranks. J. Comb. Theory Ser. A 120(1), 77-91 (2013) ·Zbl 1264.11088 ·doi:10.1016/j.jcta.2012.07.001 |
[5] | Andrews, G.E., Dixit, A., Yee, A.J.: Partitions associated with the Ramanujan/Watson mock theta functions \[\omega (q),~\nu (q)\] ω(q),ν(q) and \[\phi (q)\] ϕ(q). Res. Number Theory 1, 19 (2015). doi:10.1007/s40993-015-0020-8 ·Zbl 1386.11108 |
[6] | Andrews, G.E., Garvan, F.G., Liang, J.: Combinatorial interpretations of congruences for the spt-function. Ramanujan J. 29, 321-338 (2013) ·Zbl 1256.05012 ·doi:10.1007/s11139-012-9369-7 |
[7] | Bringmann, K.: On the explicit construction of higher deformations of partition statistics. Duke Math. 144, 195-233 (2008) ·Zbl 1154.11034 ·doi:10.1215/00127094-2008-035 |
[8] | Bringmann, K., Kim, B.: On the asymptotic behavior of unimodal rank generating functions. J. Math. Anal. Appl. 435, 627-645 (2016) ·Zbl 1402.11042 ·doi:10.1016/j.jmaa.2015.10.057 |
[9] | Bringmann, K., Mahlburg, K.: Asymptotic inequalities for positive crank and rank moments. Trans. Am. Math. Soc. 366, 1073-1094 (2014) ·Zbl 1284.11133 ·doi:10.1090/S0002-9947-2013-05945-4 |
[10] | Dyson, F.: Some guesses in the theory of partitions. Eureka (Cambridge) 8, 10-15 (1944) |
[11] | Folsom, A., Ono, K.: The spt-function of Andrews. Proc. Natl. Acad. Sci. USA 105(51), 20152-20156 (2008) ·doi:10.1073/pnas.0809431105 |
[12] | Garvan, F.G.: Congruences for Andrews’ smallest parts partition function and new congruences for Dyson’s rank. Int. J. Number Theory 6(2), 281-309 (2010) ·Zbl 1219.11153 ·doi:10.1142/S179304211000296X |
[13] | Garvan, F.G.: Higher order spt-functions. Adv. Math. 228(1), 241-265 (2011) ·Zbl 1268.11143 ·doi:10.1016/j.aim.2011.05.013 |
[14] | Garvan, F., Jennings-Shaffer, C.: Exotic Bailey-slater SPT-function II: Hecke-Rogers-type double sums and Bailey pairs from group A, C. E. Adv. Math. 299, 605-639 (2016) ·Zbl 1348.11079 ·doi:10.1016/j.aim.2016.05.021 |
[15] | Garvan, F., Jennings-Shaffer, C.: The spt-crank for overpartitions. Acta Arith. 166, 141-188 (2014) ·Zbl 1316.11093 ·doi:10.4064/aa166-2-3 |
[16] | Kim, B., Kim, E., Seo, J.: On the number of even and odd strings along overpartitions of \[n\] n. Arch. Math. (Basel) 102, 357-368 (2014) ·Zbl 1305.11086 ·doi:10.1007/s00013-014-0636-2 |
[17] | Kim, B., Kim, E., Seo, J.: Asymptotics for \[q\] q-expansions involving partial theta functions. Discrete Math. 338, 180-189 (2015) ·Zbl 1302.05010 ·doi:10.1016/j.disc.2014.09.011 |
[18] | Koblitz, N.: Introduction to elliptic curves and modular forms. Graduate Texts in Mathematics vol. 97. Springer, New York (1984) ·Zbl 0553.10019 ·doi:10.1007/978-1-4684-0255-1 |
[19] | Rolon, J.M.Z.: Asymptotics of higher order spt-functions for overpartitions. Ann. Comb. 20(1), 177-191 (2016) ·Zbl 1416.11150 ·doi:10.1007/s00026-015-0296-3 |
[20] | Treneer, S.: Congruences for the coefficients of weakly holomorphic modular forms. Proc. London Math. Soc. 93, 304-324 (2006) ·Zbl 1165.11316 ·doi:10.1112/S0024611506015814 |
[21] | Wright, E.: Asymptotic partition formulae II. Weighted partitions. Prod. London Math. Soc. 36, 117-141 (1934) ·Zbl 0007.29904 ·doi:10.1112/plms/s2-36.1.117 |
[22] | Zagier, D.: The Mellin transform and other useful analytic techniques, Appendix to E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics. A Bridge Between Mathematicians and Physicists. Springer, Berlin (2006) ·Zbl 1124.81002 |