[1] | Aveneau, L., Andres, E., Mora, F.: Expressing discrete geometry using the conformal model. In: 5th Conference on Applied Geometric Algebras in Computer Science and Engineering (AGACSE’12). La Rochelle, France (2012). https://hal.archives-ouvertes.fr/hal-00865103 ·Zbl 0219.68056 |
[2] | Aveneau, L., Fuchs, L., Andres, E.: Digital geometry from a geometric algebra perspective. In: 18th IAPR International Conference on Discrete Geometry for Computer Imagery (DGCI’14), Lecture Notes in Computer Science, vol. 8668, pp. 358-369. Siena, Italy (2014) ·Zbl 1417.68223 |
[3] | Biswas, R., Bhowmick, P.: On finding spherical geodesic paths and circles in \[{\mathbb{{Z}}}^3\] Z3. In: 18th International Conference on Discrete Geometry for Computer Imagery (DGCI’14), Lecture Notes in Computer Science, vol. 8668, pp. 396-409. Siena, Italy (2014) ·Zbl 1417.68228 |
[4] | Biswas, R., Bhowmick, P.: On different topological classes of spherical geodesic paths and circles in \[{\mathbb{{Z}}}^3\] Z3. Theoret. Comput. Sci. 605, 146-163 (2015) ·Zbl 1337.53048 ·doi:10.1016/j.tcs.2015.09.003 |
[5] | Biswas, R., Bhowmick, P.: From prima quadraginta octant to lattice sphere through primitive integer operations. Theoret. Comput. Sci. 624, 56-72 (2016) ·Zbl 1338.68256 ·doi:10.1016/j.tcs.2015.11.018 |
[6] | Biswas, R., Bhowmick, P.: On functionality of quadraginta octants of naive sphere with application to circle drawing. In: 19th International Conference on Discrete Geometry for Computer Imagery (DGCI’16), Lecture Notes in Computer Science, vol. 9647, pp. 256-267. Nantes, France (2016) ·Zbl 1475.68403 |
[7] | Biswas, R., Bhowmick, P., Brimkov, V.E.: On the connectivity and smoothness of discrete spherical circles. In: 17th International Workshop on Combinatorial Image Analysis (IWCIA’15), Lecture Notes in Computer Science, vol. 9448, pp. 86-100. Kolkata, India (2015) ·Zbl 1486.68205 |
[8] | Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25-30 (1965) ·doi:10.1147/sj.41.0025 |
[9] | Brimkov, V.E., Barneva, R.P.: Graceful planes and thin tunnel-free meshes. In: 8th International Conference on Discrete Geometry for Computer Imagery (DGCI’99), Lecture Notes in Computer Science, vol. 1568, pp. 53-64 (1999) ·Zbl 0933.68139 |
[10] | Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theoret. Comput. Sci. 283(1), 151-170 (2002) ·Zbl 1050.68147 ·doi:10.1016/S0304-3975(01)00061-5 |
[11] | Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theoret. Comput. Sci. 319(1-3), 203-227 (2004) ·Zbl 1068.52018 ·doi:10.1016/j.tcs.2004.02.015 |
[12] | Brimkov, V.E., Barneva, R.P.: Plane digitization and related combinatorial problems. Discrete Appl. Math. 147(2-3), 169-186 (2005) ·Zbl 1068.68111 ·doi:10.1016/j.dam.2004.09.010 |
[13] | Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discrete Appl. Math. 155(4), 468-495 (2007) ·Zbl 1109.68122 |
[14] | Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models Image Process. 57(6), 453-461 (1995) ·Zbl 1291.68412 |
[15] | Cohen-Or, D., Kaufman, A.: 3D line voxelization and connectivity control. IEEE Comput. Graph. Appl. 17(6), 80-87 (1997) ·doi:10.1109/38.626973 |
[16] | Gouraud, H.: Continuous shading of curved surfaces. IEEE Trans. Comput. 20(6), 623-629 (1971) ·Zbl 0219.68056 ·doi:10.1109/T-C.1971.223313 |
[17] | Kaufman, A.: Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes. SIGGRAPH Comput. Graph. 21(4), 171-179 (1987) ·doi:10.1145/37402.37423 |
[18] | Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004) ·Zbl 1064.68090 |
[19] | Mukhopadhyay, J., Das, P.P., Chattopadhyay, S., Bhowmick, P., Chatterji, B.N.: Digital Geometry in Image Processing. CRC, Boca Raton (2013) ·Zbl 1278.68020 |
[20] | Toutant, J.L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: from morphological models to analytical characterizations and topological properties. Discrete Appl. Math. 161(16-17), 2662-2677 (2013) ·Zbl 1291.68412 ·doi:10.1016/j.dam.2013.06.001 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.