Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

On the functionality and usefulness of quadraginta octants of naive sphere.(English)Zbl 1420.68223

Summary: This paper presents a novel study on the functional gradation of coordinate planes in connection with the thinnest and tunnel-free (i.e.,naive) discretization of sphere in the integer space. For each of the 48-symmetricquadraginta octants of naive sphere with integer radius and integer center, we show that the corresponding voxel set forms a bijection with its projected pixel set on a unique coordinate plane, which thereby serves as itsfunctional plane. We use this fundamental property to prove several other theoretical results for naive sphere. First, the quadraginta octants form symmetry groups and subgroups with certain equivalent topological properties. Second, a naive sphere is always unique and consists of fewest voxels. Third, it is efficiently constructible from its functional-plane projection. And finally, a special class of 4-symmetric discrete 3D circles can be constructed on a naive sphere based on back projection from the functional plane.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

Cite

References:

[1]Aveneau, L., Andres, E., Mora, F.: Expressing discrete geometry using the conformal model. In: 5th Conference on Applied Geometric Algebras in Computer Science and Engineering (AGACSE’12). La Rochelle, France (2012). https://hal.archives-ouvertes.fr/hal-00865103 ·Zbl 0219.68056
[2]Aveneau, L., Fuchs, L., Andres, E.: Digital geometry from a geometric algebra perspective. In: 18th IAPR International Conference on Discrete Geometry for Computer Imagery (DGCI’14), Lecture Notes in Computer Science, vol. 8668, pp. 358-369. Siena, Italy (2014) ·Zbl 1417.68223
[3]Biswas, R., Bhowmick, P.: On finding spherical geodesic paths and circles in \[{\mathbb{{Z}}}^3\] Z3. In: 18th International Conference on Discrete Geometry for Computer Imagery (DGCI’14), Lecture Notes in Computer Science, vol. 8668, pp. 396-409. Siena, Italy (2014) ·Zbl 1417.68228
[4]Biswas, R., Bhowmick, P.: On different topological classes of spherical geodesic paths and circles in \[{\mathbb{{Z}}}^3\] Z3. Theoret. Comput. Sci. 605, 146-163 (2015) ·Zbl 1337.53048 ·doi:10.1016/j.tcs.2015.09.003
[5]Biswas, R., Bhowmick, P.: From prima quadraginta octant to lattice sphere through primitive integer operations. Theoret. Comput. Sci. 624, 56-72 (2016) ·Zbl 1338.68256 ·doi:10.1016/j.tcs.2015.11.018
[6]Biswas, R., Bhowmick, P.: On functionality of quadraginta octants of naive sphere with application to circle drawing. In: 19th International Conference on Discrete Geometry for Computer Imagery (DGCI’16), Lecture Notes in Computer Science, vol. 9647, pp. 256-267. Nantes, France (2016) ·Zbl 1475.68403
[7]Biswas, R., Bhowmick, P., Brimkov, V.E.: On the connectivity and smoothness of discrete spherical circles. In: 17th International Workshop on Combinatorial Image Analysis (IWCIA’15), Lecture Notes in Computer Science, vol. 9448, pp. 86-100. Kolkata, India (2015) ·Zbl 1486.68205
[8]Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25-30 (1965) ·doi:10.1147/sj.41.0025
[9]Brimkov, V.E., Barneva, R.P.: Graceful planes and thin tunnel-free meshes. In: 8th International Conference on Discrete Geometry for Computer Imagery (DGCI’99), Lecture Notes in Computer Science, vol. 1568, pp. 53-64 (1999) ·Zbl 0933.68139
[10]Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theoret. Comput. Sci. 283(1), 151-170 (2002) ·Zbl 1050.68147 ·doi:10.1016/S0304-3975(01)00061-5
[11]Brimkov, V.E., Barneva, R.P.: Connectivity of discrete planes. Theoret. Comput. Sci. 319(1-3), 203-227 (2004) ·Zbl 1068.52018 ·doi:10.1016/j.tcs.2004.02.015
[12]Brimkov, V.E., Barneva, R.P.: Plane digitization and related combinatorial problems. Discrete Appl. Math. 147(2-3), 169-186 (2005) ·Zbl 1068.68111 ·doi:10.1016/j.dam.2004.09.010
[13]Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discrete Appl. Math. 155(4), 468-495 (2007) ·Zbl 1109.68122
[14]Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models Image Process. 57(6), 453-461 (1995) ·Zbl 1291.68412
[15]Cohen-Or, D., Kaufman, A.: 3D line voxelization and connectivity control. IEEE Comput. Graph. Appl. 17(6), 80-87 (1997) ·doi:10.1109/38.626973
[16]Gouraud, H.: Continuous shading of curved surfaces. IEEE Trans. Comput. 20(6), 623-629 (1971) ·Zbl 0219.68056 ·doi:10.1109/T-C.1971.223313
[17]Kaufman, A.: Efficient algorithms for 3D scan-conversion of parametric curves, surfaces, and volumes. SIGGRAPH Comput. Graph. 21(4), 171-179 (1987) ·doi:10.1145/37402.37423
[18]Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004) ·Zbl 1064.68090
[19]Mukhopadhyay, J., Das, P.P., Chattopadhyay, S., Bhowmick, P., Chatterji, B.N.: Digital Geometry in Image Processing. CRC, Boca Raton (2013) ·Zbl 1278.68020
[20]Toutant, J.L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: from morphological models to analytical characterizations and topological properties. Discrete Appl. Math. 161(16-17), 2662-2677 (2013) ·Zbl 1291.68412 ·doi:10.1016/j.dam.2013.06.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp