Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Differential algebras in codifferential categories.(English)Zbl 1420.18019

Derivations valued in modules over a commutative algebra are generalized to the context of a codifferential category in [R. Blute et al., Cah. Topol. Géom. Différ. Catég. 57, No. 4, 243–279 (2016;Zbl 1364.13026)] with the notion of \(\top\)-algebra. A \(\top\)-differential algebra in a codifferential category is a \(\top\)-algebra endowed with a \(\top\)-derivation of type \(D:A\rightarrow A\). \(\top\)-differential algebras, which are the main concept of study in this paper, are the appropriate generalization of differential algebras in codifferential categories. The paper consists of 8 sections. It is shown in §5 that every \(\top\)-differential algebra is a differential algebra in the classical sense, satisfying not only the higher-order Leibniz rule but also the Faà di Bruno formula for a higher-order chain rule. §6 is devoted to three basic examples of codifferential categories and their \(\top \)-differential algebras. §7 demonstrates that, given a codifferential category with countable coproducts, its category of \(\top\)-differential algebras is monadic over the codifferential category, while §8 shows that, given a codifferential category with countable coproducts, the category of \(\top\)-differential algebras is comonadic over the category of \(\top\)-algebras.

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
12H05 Differential algebra

Citations:

Zbl 1364.13026

Cite

References:

[1]Ehrhard, T.; Regnier, L., The differential lambda-calculus, Theor. Comput. Sci., 309, 1, 1-41 (2003) ·Zbl 1070.68020
[2]Ehrhard, T.; Regnier, L., Differential interaction nets, Theor. Comput. Sci., 364, 2, 166-195 (2006) ·Zbl 1113.03054
[3]Blute, R. F.; Cockett, J. R.B.; Seely, R. A.G., Differential categories, Math. Struct. Comput. Sci., 16, 06, 1049-1083 (2006) ·Zbl 1115.03092
[4]Blute, R. F.; Cockett, J. R.B.; Seely, R. A.G., Cartesian differential storage categories, Theory Appl. Categ., 30, 18, 620-686 (2015) ·Zbl 1330.18009
[5]Blute, R. F.; Ehrhard, T.; Tasson, C., A convenient differential category, Cah. Topol. Géom. Différ., LIII, 211-232 (2012) ·Zbl 1281.46061
[6]Cockett, J. R.B.; P. Lemay, J.-S., There is Only One Notion of Differentiation, LIPIcs. Leibniz Int. Proc. Inform., vol. 84 (2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik ·Zbl 1434.18005
[7]Cockett, J. R.B.; P. Lemay, J.-S., Integral categories and calculus categories, Math. Struct. Comput. Sci., 29, 2, 243-308 (2019) ·Zbl 1408.18012
[8]Ehrhard, T., An introduction to differential linear logic: proof-nets, models and antiderivatives, Math. Struct. Comput. Sci., 28, 7, 995-1060 (2018) ·Zbl 1456.03097
[9]Fiore, M. P., Differential structure in models of multiplicative biadditive intuitionistic linear logic, (International Conference on Typed Lambda Calculi and Applications (2007), Springer), 163-177 ·Zbl 1215.03072
[10]Blute, R. F.; Cockett, J. R.B.; Seely, R. A.G., Cartesian differential categories, Theory Appl. Categ., 22, 23, 622-672 (2009) ·Zbl 1262.18004
[11]Blute, R. F.; Cockett, J. R.B.; Porter, T.; Seely, R. A.G., Kähler categories, Cah. Topol. Géom. Différ. Catég., 52, 4, 253-268 (2011) ·Zbl 1254.13026
[12]Blute, R. F.; Lucyshyn-Wright, R. B.B.; O’Neill, K., Derivations in codifferential categories, Cah. Topol. Géom. Différ. Catég., 57, 243-280 (2016) ·Zbl 1364.13026
[13]Cruttwell, G. S.H., Forms and exterior differentiation in Cartesian differential categories, Theory Appl. Categ., 28, 28, 981-1001 (2013) ·Zbl 1288.18008
[14]Cockett, J. R.B.; Cruttwell, G. S.H., Differential structure, tangent structure, and sdg, Appl. Categ. Struct., 22, 2, 331-417 (2014) ·Zbl 1304.18031
[15]Cruttwell, G. S.H.; Lucyshyn-Wright, R. B.B., A simplicial foundation for differential and sector forms in tangent categories, J. Homotopy Relat. Struct., 13, 4, 867-925 (2018) ·Zbl 1405.18017
[16]O’Neill, K., Smoothness in Codifferential Categories (2017), Université d’Ottawa/University of Ottawa, Ph.D. thesis
[17]Kaplansky, I., An Introduction to Differential Algebra (1976)
[18]Kolchin, E. R., Differential Algebra & Algebraic Groups, vol. 54 (1973), Academic Press ·Zbl 0264.12102
[19]Ritt, J. F., Differential Algebra, vol. 33 (1950), American Mathematical Soc. ·Zbl 0037.18402
[20]Guo, L.; Keigher, W. F., On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212, 3, 522-540 (2008) ·Zbl 1185.16038
[21]Keigher, W. F., Adjunctions and comonads in differential algebra, Pac. J. Math., 59, 1, 99-112 (1975) ·Zbl 0327.12104
[22]Keigher, W. F., On the ring of Hurwitz series, Commun. Algebra, 25, 6, 1845-1859 (1997) ·Zbl 0884.13013
[23]Keigher, W. F.; Pritchard, F. L., Hurwitz series as formal functions, J. Pure Appl. Algebra, 146, 3, 291-304 (2000) ·Zbl 0978.12007
[24]Van der Put, M.; Singer, M. F., Galois Theory of Linear Differential Equations, vol. 328 (2012), Springer Science & Business Media
[25]Blute, R. F.; Cockett, J. R.B.; P. Lemay, J.-S.; Seely, R. A.G., Differential categories revisited, arXiv preprint ·Zbl 1330.18009
[26]Loday, J.-L., Cyclic Homology, vol. 301 (2013), Springer Science & Business Media
[27]Lee, J. M., Manifolds and Differential Geometry (2009) ·Zbl 1190.58001
[28]Weibel, C. A., An Introduction to Homological Algebra, No. 38 (1995), Cambridge University Press ·Zbl 0834.18001
[29]Mac Lane, S., Categories for the Working Mathematician (2013), Springer-Verlag: Springer-Verlag New York, Berlin, Heidelberg, revised ·Zbl 0906.18001
[30]Guo, L., An Introduction to Rota-Baxter Algebra, vol. 2 (2012), International Press: International Press Somerville ·Zbl 1271.16001
[31]Crespo, T.; Hajto, Z., Algebraic Groups and Differential Galois Theory, vol. 122 (2011), American Mathematical Soc. ·Zbl 1215.12001
[32]Lang, S., Algebra, Grad. Texts Math., vol. 211 (2002) ·Zbl 0984.00001
[33]Joyce, D., An introduction to \(C^\infty \)-schemes and \(C^\infty \)-algebraic geometry, Surv. Differ. Geom., 17, 299-325 (2012) ·Zbl 1382.58007
[34]Moerdijk, I.; Reyes, G. E., Models for Smooth Infinitesimal Analysis (2013), Springer Science & Business Media
[35]Kainz, G.; Kriegl, A.; Michor, P., \(C^\infty \)-algebras from the functional analytic view point, J. Pure Appl. Algebra, 46, 1, 89-107 (1987) ·Zbl 0621.46046
[36]Dubuc, E. J.; Kock, A., On 1-form classifiers, Commun. Algebra, 12, 12, 1471-1531 (1984) ·Zbl 1254.51005
[37]Bagnol, M.; Blute, R. F.; Cockett, J. R.B.; P. Lemay, J.-S., The shuffle quasimonad and modules with differentiation and integration, Electron. Notes Theor. Comput. Sci., 325, 29-45 (2016) ·Zbl 1395.03031
[38]Delaney, C., Generalized Differential and Integral Categories (2018), Université d’Ottawa/University of Ottawa, Ph.D. thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp