[1] | Ehrhard, T.; Regnier, L., The differential lambda-calculus, Theor. Comput. Sci., 309, 1, 1-41 (2003) ·Zbl 1070.68020 |
[2] | Ehrhard, T.; Regnier, L., Differential interaction nets, Theor. Comput. Sci., 364, 2, 166-195 (2006) ·Zbl 1113.03054 |
[3] | Blute, R. F.; Cockett, J. R.B.; Seely, R. A.G., Differential categories, Math. Struct. Comput. Sci., 16, 06, 1049-1083 (2006) ·Zbl 1115.03092 |
[4] | Blute, R. F.; Cockett, J. R.B.; Seely, R. A.G., Cartesian differential storage categories, Theory Appl. Categ., 30, 18, 620-686 (2015) ·Zbl 1330.18009 |
[5] | Blute, R. F.; Ehrhard, T.; Tasson, C., A convenient differential category, Cah. Topol. Géom. Différ., LIII, 211-232 (2012) ·Zbl 1281.46061 |
[6] | Cockett, J. R.B.; P. Lemay, J.-S., There is Only One Notion of Differentiation, LIPIcs. Leibniz Int. Proc. Inform., vol. 84 (2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik ·Zbl 1434.18005 |
[7] | Cockett, J. R.B.; P. Lemay, J.-S., Integral categories and calculus categories, Math. Struct. Comput. Sci., 29, 2, 243-308 (2019) ·Zbl 1408.18012 |
[8] | Ehrhard, T., An introduction to differential linear logic: proof-nets, models and antiderivatives, Math. Struct. Comput. Sci., 28, 7, 995-1060 (2018) ·Zbl 1456.03097 |
[9] | Fiore, M. P., Differential structure in models of multiplicative biadditive intuitionistic linear logic, (International Conference on Typed Lambda Calculi and Applications (2007), Springer), 163-177 ·Zbl 1215.03072 |
[10] | Blute, R. F.; Cockett, J. R.B.; Seely, R. A.G., Cartesian differential categories, Theory Appl. Categ., 22, 23, 622-672 (2009) ·Zbl 1262.18004 |
[11] | Blute, R. F.; Cockett, J. R.B.; Porter, T.; Seely, R. A.G., Kähler categories, Cah. Topol. Géom. Différ. Catég., 52, 4, 253-268 (2011) ·Zbl 1254.13026 |
[12] | Blute, R. F.; Lucyshyn-Wright, R. B.B.; O’Neill, K., Derivations in codifferential categories, Cah. Topol. Géom. Différ. Catég., 57, 243-280 (2016) ·Zbl 1364.13026 |
[13] | Cruttwell, G. S.H., Forms and exterior differentiation in Cartesian differential categories, Theory Appl. Categ., 28, 28, 981-1001 (2013) ·Zbl 1288.18008 |
[14] | Cockett, J. R.B.; Cruttwell, G. S.H., Differential structure, tangent structure, and sdg, Appl. Categ. Struct., 22, 2, 331-417 (2014) ·Zbl 1304.18031 |
[15] | Cruttwell, G. S.H.; Lucyshyn-Wright, R. B.B., A simplicial foundation for differential and sector forms in tangent categories, J. Homotopy Relat. Struct., 13, 4, 867-925 (2018) ·Zbl 1405.18017 |
[16] | O’Neill, K., Smoothness in Codifferential Categories (2017), Université d’Ottawa/University of Ottawa, Ph.D. thesis |
[17] | Kaplansky, I., An Introduction to Differential Algebra (1976) |
[18] | Kolchin, E. R., Differential Algebra & Algebraic Groups, vol. 54 (1973), Academic Press ·Zbl 0264.12102 |
[19] | Ritt, J. F., Differential Algebra, vol. 33 (1950), American Mathematical Soc. ·Zbl 0037.18402 |
[20] | Guo, L.; Keigher, W. F., On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212, 3, 522-540 (2008) ·Zbl 1185.16038 |
[21] | Keigher, W. F., Adjunctions and comonads in differential algebra, Pac. J. Math., 59, 1, 99-112 (1975) ·Zbl 0327.12104 |
[22] | Keigher, W. F., On the ring of Hurwitz series, Commun. Algebra, 25, 6, 1845-1859 (1997) ·Zbl 0884.13013 |
[23] | Keigher, W. F.; Pritchard, F. L., Hurwitz series as formal functions, J. Pure Appl. Algebra, 146, 3, 291-304 (2000) ·Zbl 0978.12007 |
[24] | Van der Put, M.; Singer, M. F., Galois Theory of Linear Differential Equations, vol. 328 (2012), Springer Science & Business Media |
[25] | Blute, R. F.; Cockett, J. R.B.; P. Lemay, J.-S.; Seely, R. A.G., Differential categories revisited, arXiv preprint ·Zbl 1330.18009 |
[26] | Loday, J.-L., Cyclic Homology, vol. 301 (2013), Springer Science & Business Media |
[27] | Lee, J. M., Manifolds and Differential Geometry (2009) ·Zbl 1190.58001 |
[28] | Weibel, C. A., An Introduction to Homological Algebra, No. 38 (1995), Cambridge University Press ·Zbl 0834.18001 |
[29] | Mac Lane, S., Categories for the Working Mathematician (2013), Springer-Verlag: Springer-Verlag New York, Berlin, Heidelberg, revised ·Zbl 0906.18001 |
[30] | Guo, L., An Introduction to Rota-Baxter Algebra, vol. 2 (2012), International Press: International Press Somerville ·Zbl 1271.16001 |
[31] | Crespo, T.; Hajto, Z., Algebraic Groups and Differential Galois Theory, vol. 122 (2011), American Mathematical Soc. ·Zbl 1215.12001 |
[32] | Lang, S., Algebra, Grad. Texts Math., vol. 211 (2002) ·Zbl 0984.00001 |
[33] | Joyce, D., An introduction to \(C^\infty \)-schemes and \(C^\infty \)-algebraic geometry, Surv. Differ. Geom., 17, 299-325 (2012) ·Zbl 1382.58007 |
[34] | Moerdijk, I.; Reyes, G. E., Models for Smooth Infinitesimal Analysis (2013), Springer Science & Business Media |
[35] | Kainz, G.; Kriegl, A.; Michor, P., \(C^\infty \)-algebras from the functional analytic view point, J. Pure Appl. Algebra, 46, 1, 89-107 (1987) ·Zbl 0621.46046 |
[36] | Dubuc, E. J.; Kock, A., On 1-form classifiers, Commun. Algebra, 12, 12, 1471-1531 (1984) ·Zbl 1254.51005 |
[37] | Bagnol, M.; Blute, R. F.; Cockett, J. R.B.; P. Lemay, J.-S., The shuffle quasimonad and modules with differentiation and integration, Electron. Notes Theor. Comput. Sci., 325, 29-45 (2016) ·Zbl 1395.03031 |
[38] | Delaney, C., Generalized Differential and Integral Categories (2018), Université d’Ottawa/University of Ottawa, Ph.D. thesis |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.