Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Parabolic equation in time and space dependent anisotropic Musielak-Orlicz spaces in absence of Lavrentiev’s phenomenon.(English)Zbl 1419.35092

The authors study a general nonlinear parabolic equation on a Lipschitz bounded domain with bounced and measurable data:We study a general nonlinear parabolic equation on a Lipschitz bounded domain in \(\mathbb{R}^N\),\[\begin{cases} \partial_t u - \operatorname{div} A(t, x, \nabla u) = f(t, x) \quad & \text{in } \Omega_T, \\u(t, x) = 0 & \text{on }(0, T) \times \partial \Omega, \\ u(0, x) = u_0(x) & \text{in } \Omega, \end{cases}\]with \(f \in L^\infty(\Omega_T)\) and \(u_0 \in L^\infty(\Omega)\). The growth of the monotone vector field \(A(t,x,\nabla u) \) is controlled by a generalized fully anisotropic \(N\)-function \(M : [0, T) \times \Omega \times \mathbb{R}^N \rightarrow [0, \infty)\) inhomogeneous in time and space, and under no growth restrictions on the last variable. Existence and uniqueness of solutions are proved when the Musielak-Orlicz space is reflexive or in absence of Lavrentiev’s phenomenon. Notably challenging is the problem in non-reflexive and inhomogeneous fully anisotropic space that changes along time. To get this so interesting results, the authors impose natural assumption on the asymptotic behaviour of the modular function.

MSC:

35K55 Nonlinear parabolic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B65 Smoothness and regularity of solutions to PDEs

Cite

References:

[1]Ahmida, Y.; Chlebicka, I.; Gwiazda, P.; Youssfi, A., Gossez’s approximation theorems in the Musielak-Orlicz-Sobolev spaces, J. Funct. Anal., 275, 9, 2538-2571 (2018) ·Zbl 1405.42042
[2]Alberico, A., Boundedness of solutions to anisotropic variational problems, Commun. Partial Differ. Equ., 36, 3, 470-486 (2011) ·Zbl 1210.49024
[3]A. Alberico, I. Chlebicka, A. Cianchi, A. Zatorska-Goldstein, Fully anisotropic elliptic problem with minimally integrable data, preprint, 2018.; A. Alberico, I. Chlebicka, A. Cianchi, A. Zatorska-Goldstein, Fully anisotropic elliptic problem with minimally integrable data, preprint, 2018.
[4]Alberico, A.; Cianchi, A., Comparison estimates in anisotropic variational problems, Manuscr. Math., 126, 4, 481-503 (2008) ·Zbl 1357.49137
[5]Alberico, A.; di Blasio, G.; Feo, F., Comparison results for nonlinear anisotropic parabolic problems, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 28, 2, 305-322 (2017) ·Zbl 1371.35148
[6]Barletta, G.; Cianchi, A., Dirichlet problems for fully anisotropic elliptic equations, Proc. R. Soc. Edinb., Sect. A, 147, 1, 25-60 (2017) ·Zbl 1388.35043
[7]Baroni, P.; Colombo, M.; Mingione, G., Nonautonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27, 3, 347-379 (2016) ·Zbl 1335.49057
[8]Baroni, P.; Colombo, M.; Mingione, G., Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., 57, 2, 57-62 (2018) ·Zbl 1394.49034
[9]Bögelein, V.; Duzaar, F.; Marcellini, P.; Scheven, C., A variational approach to porous medium type equation, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 29, 4, 739-772 (2018) ·Zbl 1407.35123
[10]Bögelein, V.; Duzaar, F.; Marcellini, P.; Scheven, C., Doubly nonlinear equations of porous medium type, Arch. Ration. Mech. Anal., 229, 2, 503-545 (2018) ·Zbl 1394.35349
[11]Chlebicka, I., A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces, Nonlinear Anal., 175, 1-27 (2018) ·Zbl 1395.35070
[12]Chlebicka, I.; Giannetti, F.; Zatorska-Goldstein, A., Elliptic problems in nonreflexive Orlicz spaces with measure or \(L^1\) data (2018), submitted for publication
[13]I. Chlebicka, P. Gwiazda, A. Wróblewska-Kamińska, Świerczewska-Gwiazda, Partial differential equations in anisotropic Musielak-Orlicz spaces, manuscript, 2019.; I. Chlebicka, P. Gwiazda, A. Wróblewska-Kamińska, Świerczewska-Gwiazda, Partial differential equations in anisotropic Musielak-Orlicz spaces, manuscript, 2019.
[14]Chlebicka, I.; Gwiazda, P.; Zatorska-Goldstein, A., Well-posedness of parabolic equations in the non-reflexive and anisotropic Musielak-Orlicz spaces in the class of renormalized solutions, J. Differ. Equ., 265, 11, 5716-5766 (2018) ·Zbl 1397.35126
[15]Cianchi, A., A fully anisotropic Sobolev inequality, Pac. J. Math., 196, 2, 283-295 (2000) ·Zbl 0966.46017
[16]Cianchi, A., Symmetrization in anisotropic elliptic problems, Commun. Partial Differ. Equ., 32, 4-6, 693-717 (2007) ·Zbl 1219.35028
[17]Colombo, M.; Mingione, G., Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215, 2, 443-496 (2015) ·Zbl 1322.49065
[18]Donaldson, T., Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces, J. Differ. Equ., 10, 507-528 (1971) ·Zbl 0218.35028
[19]Eleuteri, M.; Marcellini, P.; Mascolo, E., Lipschitz continuity for energy integrals with variable exponents, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 27, 1, 61-87 (2016) ·Zbl 1338.35169
[20]Eleuteri, M.; Marcellini, P.; Mascolo, E., Regularity for scalar integrals without structure conditions, Adv. Calc. Var. (2018)
[21]Elmahi, A.; Meskine, D., Parabolic equations in Orlicz spaces, J. Lond. Math. Soc. (2), 72, 2, 410-428 (2005) ·Zbl 1108.35082
[22]Elmahi, A.; Meskine, D., Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces, Nonlinear Anal., 60, 1, 1-35 (2005) ·Zbl 1082.35085
[23]Esposito, L.; Leonetti, F.; Mingione, G., Sharp regularity for functionals with \((p, q)\) growth, J. Differ. Equ., 204, 1, 5-55 (2004) ·Zbl 1072.49024
[24]Gajewski, H.; Gröger, K.; Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien, Band 38 (1974), Akademie-Verlag: Akademie-Verlag Berlin ·Zbl 0289.47029
[25]Gossez, J.-P., Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc., 190, 163-205 (1974) ·Zbl 0239.35045
[26]Gossez, J.-P., Orlicz-Sobolev spaces and nonlinear elliptic boundary value problems, (Nonlinear Analysis, Function Spaces and Applications. Nonlinear Analysis, Function Spaces and Applications, Proc. Spring School, Horni Bradlo, 1978 (1979), Teubner: Teubner Leipzig), 59-94 ·Zbl 0417.46033
[27]Gossez, J.-P., Some approximation properties in Orlicz-Sobolev spaces, Stud. Math., 74, 1, 17-24 (1982) ·Zbl 0503.46018
[28]Gwiazda, P.; Minakowski, P.; Wróblewska-Kamińska, A., Elliptic problems in generalized Orlicz-Musielak spaces, Cent. Eur. J. Math., 10, 6, 2019-2032 (2012) ·Zbl 1268.35056
[29]Gwiazda, P.; Skrzypczak, I.; Zatorska-Goldstein, A., Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space, J. Differ. Equ., 264, 1, 341-377 (2018) ·Zbl 1376.35046
[30]Gwiazda, P.; Świerczewska-Gwiazda, A., On non-Newtonian fluids with a property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci., 18, 7, 1073-1092 (2008) ·Zbl 1152.35332
[31]Gwiazda, P.; Świerczewska-Gwiazda, A., On steady non-Newtonian fluids with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal., 32, 1, 103-113 (2008) ·Zbl 1172.35352
[32]Gwiazda, P.; Świerczewska-Gwiazda, A., Parabolic equations in anisotropic Orlicz spaces with general \(N\)-functions, (Parabolic Problems. Parabolic Problems, Progr. Nonlinear Differential Equations Appl., vol. 80 (2011), Birkhäuser/Springer Basel AG: Birkhäuser/Springer Basel AG Basel), 301-311 ·Zbl 1250.35122
[33]Gwiazda, P.; Świerczewska-Gwiazda, A.; Wróblewska, A., Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci., 33, 2, 125-137 (2010) ·Zbl 1180.35427
[34]Gwiazda, P.; Wittbold, P.; Wróblewska, A.; Zimmermann, A., Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differ. Equ., 253, 2, 635-666 (2012) ·Zbl 1245.35039
[35]Gwiazda, P.; Wittbold, P.; Wróblewska-Kamińska, A.; Zimmermann, A., Corrigendum to “Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces”, J. Differ. Equ.. J. Differ. Equ., J. Differ. Equ., 253, 9, 2734-2738 (2012) ·Zbl 1255.35107
[36]Gwiazda, P.; Wittbold, P.; Wróblewska-Kamińska, A.; Zimmermann, A., Renormalized solutions to nonlinear parabolic problems in generalized Musielak-Orlicz spaces, Nonlinear Anal., 129, 1-36 (2015) ·Zbl 1331.35173
[37]Harjulehto, P.; Hästö, P.; Karppinen, A., Local higher integrability of the gradient of a quasiminimizer under generalized Orlicz growth conditions, Nonlinear Anal., 177, 543-552 (2018) ·Zbl 1403.49034
[38]Harjulehto, P.; Hästö, P.; Klén, R., Generalized Orlicz spaces and related PDE, Nonlinear Anal., 143, 155-173 (2016) ·Zbl 1360.46029
[39]Harjulehto, P.; Hästö, P.; Toivanen, O., Hölder regularity of quasiminimizers under generalized growth conditions, Calc. Var. Partial Differ. Equ., 56, 22 (2017) ·Zbl 1366.35036
[40]P. Harjulehto, P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, in press.; P. Harjulehto, P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, in press. ·Zbl 1436.46002
[41]Lavrentiev, M., Sur quelques problèmes du calcul des variations, Ann. Mat. Pura Appl., 41, 107-124 (1927)
[42]Le, V. K., On second order elliptic equations and variational inequalities with anisotropic principal operators, Topol. Methods Nonlinear Anal., 44, 1, 41-72 (2014) ·Zbl 1376.35050
[43]Maeda, F.-Y.; Mizuta, Y.; Ohno, T.; Shimomura, T., Approximate identities and Young type inequalities in Musielak-Orlicz spaces, Czechoslov. Math. J., 63(138), 4, 933-948 (2013) ·Zbl 1313.46041
[44]Maeda, F.-Y.; Mizuta, Y.; Ohno, T.; Shimomura, T., Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math., 137, 1, 76-96 (2013) ·Zbl 1267.46045
[45]Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105, 3, 267-284 (1989) ·Zbl 0667.49032
[46]Marcellini, P., Regularity and existence of solutions of elliptic equations with \(p, q\)-growth conditions, J. Differ. Equ., 90, 1, 1-30 (1991) ·Zbl 0724.35043
[47]Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034 (1983), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0557.46020
[48]Mustonen, V.; Tienari, M., On monotone-like mappings in Orlicz-Sobolev spaces, Math. Bohem., 124, 2-3, 255-271 (1999) ·Zbl 0940.47042
[49]Novotný, A.; Straškraba, I., Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and its Applications, vol. 27 (2004), Oxford University Press: Oxford University Press Oxford ·Zbl 1088.35051
[50]Skaff, M. S., Vector valued Orlicz spaces generalized \(N\)-functions. I, Pac. J. Math., 28, 193-206 (1969) ·Zbl 0176.11002
[51]Skaff, M. S., Vector valued Orlicz spaces generalized \(N\)-functions. II, Pac. J. Math., 28, 413-430 (1969) ·Zbl 0176.11003
[52]Świerczewska-Gwiazda, A., Nonlinear parabolic problems in Musielak-Orlicz spaces, Nonlinear Anal., 98, 48-65 (2014) ·Zbl 1286.35070
[53]Trudinger, N. S., An imbedding theorem for \(H_0(G, \Omega)\) spaces, Stud. Math., 50, 17-30 (1974) ·Zbl 0247.46052
[54]Wróblewska, A., Steady flow of non-Newtonian fluids—monotonicity methods in generalized Orlicz spaces, Nonlinear Anal., 72, 11, 4136-4147 (2010) ·Zbl 1200.35234
[55]Zhikov, V. V., On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3, 2, 249-269 (1995) ·Zbl 0910.49020
[56]Zhikov, V. V., On some variational problems, Russ. J. Math. Phys., 5, 1, 105-116 (1998), 1997 ·Zbl 0917.49006
[57]Zhikov, V. V., On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. (N.Y.), 173, 5, 463-570 (2011), Problems in Mathematical Analysis, No. 54 ·Zbl 1279.49005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp