[1] | Ahmida, Y.; Chlebicka, I.; Gwiazda, P.; Youssfi, A., Gossez’s approximation theorems in the Musielak-Orlicz-Sobolev spaces, J. Funct. Anal., 275, 9, 2538-2571 (2018) ·Zbl 1405.42042 |
[2] | Alberico, A., Boundedness of solutions to anisotropic variational problems, Commun. Partial Differ. Equ., 36, 3, 470-486 (2011) ·Zbl 1210.49024 |
[3] | A. Alberico, I. Chlebicka, A. Cianchi, A. Zatorska-Goldstein, Fully anisotropic elliptic problem with minimally integrable data, preprint, 2018.; A. Alberico, I. Chlebicka, A. Cianchi, A. Zatorska-Goldstein, Fully anisotropic elliptic problem with minimally integrable data, preprint, 2018. |
[4] | Alberico, A.; Cianchi, A., Comparison estimates in anisotropic variational problems, Manuscr. Math., 126, 4, 481-503 (2008) ·Zbl 1357.49137 |
[5] | Alberico, A.; di Blasio, G.; Feo, F., Comparison results for nonlinear anisotropic parabolic problems, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 28, 2, 305-322 (2017) ·Zbl 1371.35148 |
[6] | Barletta, G.; Cianchi, A., Dirichlet problems for fully anisotropic elliptic equations, Proc. R. Soc. Edinb., Sect. A, 147, 1, 25-60 (2017) ·Zbl 1388.35043 |
[7] | Baroni, P.; Colombo, M.; Mingione, G., Nonautonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27, 3, 347-379 (2016) ·Zbl 1335.49057 |
[8] | Baroni, P.; Colombo, M.; Mingione, G., Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., 57, 2, 57-62 (2018) ·Zbl 1394.49034 |
[9] | Bögelein, V.; Duzaar, F.; Marcellini, P.; Scheven, C., A variational approach to porous medium type equation, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 29, 4, 739-772 (2018) ·Zbl 1407.35123 |
[10] | Bögelein, V.; Duzaar, F.; Marcellini, P.; Scheven, C., Doubly nonlinear equations of porous medium type, Arch. Ration. Mech. Anal., 229, 2, 503-545 (2018) ·Zbl 1394.35349 |
[11] | Chlebicka, I., A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces, Nonlinear Anal., 175, 1-27 (2018) ·Zbl 1395.35070 |
[12] | Chlebicka, I.; Giannetti, F.; Zatorska-Goldstein, A., Elliptic problems in nonreflexive Orlicz spaces with measure or \(L^1\) data (2018), submitted for publication |
[13] | I. Chlebicka, P. Gwiazda, A. Wróblewska-Kamińska, Świerczewska-Gwiazda, Partial differential equations in anisotropic Musielak-Orlicz spaces, manuscript, 2019.; I. Chlebicka, P. Gwiazda, A. Wróblewska-Kamińska, Świerczewska-Gwiazda, Partial differential equations in anisotropic Musielak-Orlicz spaces, manuscript, 2019. |
[14] | Chlebicka, I.; Gwiazda, P.; Zatorska-Goldstein, A., Well-posedness of parabolic equations in the non-reflexive and anisotropic Musielak-Orlicz spaces in the class of renormalized solutions, J. Differ. Equ., 265, 11, 5716-5766 (2018) ·Zbl 1397.35126 |
[15] | Cianchi, A., A fully anisotropic Sobolev inequality, Pac. J. Math., 196, 2, 283-295 (2000) ·Zbl 0966.46017 |
[16] | Cianchi, A., Symmetrization in anisotropic elliptic problems, Commun. Partial Differ. Equ., 32, 4-6, 693-717 (2007) ·Zbl 1219.35028 |
[17] | Colombo, M.; Mingione, G., Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 215, 2, 443-496 (2015) ·Zbl 1322.49065 |
[18] | Donaldson, T., Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces, J. Differ. Equ., 10, 507-528 (1971) ·Zbl 0218.35028 |
[19] | Eleuteri, M.; Marcellini, P.; Mascolo, E., Lipschitz continuity for energy integrals with variable exponents, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., 27, 1, 61-87 (2016) ·Zbl 1338.35169 |
[20] | Eleuteri, M.; Marcellini, P.; Mascolo, E., Regularity for scalar integrals without structure conditions, Adv. Calc. Var. (2018) |
[21] | Elmahi, A.; Meskine, D., Parabolic equations in Orlicz spaces, J. Lond. Math. Soc. (2), 72, 2, 410-428 (2005) ·Zbl 1108.35082 |
[22] | Elmahi, A.; Meskine, D., Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces, Nonlinear Anal., 60, 1, 1-35 (2005) ·Zbl 1082.35085 |
[23] | Esposito, L.; Leonetti, F.; Mingione, G., Sharp regularity for functionals with \((p, q)\) growth, J. Differ. Equ., 204, 1, 5-55 (2004) ·Zbl 1072.49024 |
[24] | Gajewski, H.; Gröger, K.; Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien, Band 38 (1974), Akademie-Verlag: Akademie-Verlag Berlin ·Zbl 0289.47029 |
[25] | Gossez, J.-P., Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc., 190, 163-205 (1974) ·Zbl 0239.35045 |
[26] | Gossez, J.-P., Orlicz-Sobolev spaces and nonlinear elliptic boundary value problems, (Nonlinear Analysis, Function Spaces and Applications. Nonlinear Analysis, Function Spaces and Applications, Proc. Spring School, Horni Bradlo, 1978 (1979), Teubner: Teubner Leipzig), 59-94 ·Zbl 0417.46033 |
[27] | Gossez, J.-P., Some approximation properties in Orlicz-Sobolev spaces, Stud. Math., 74, 1, 17-24 (1982) ·Zbl 0503.46018 |
[28] | Gwiazda, P.; Minakowski, P.; Wróblewska-Kamińska, A., Elliptic problems in generalized Orlicz-Musielak spaces, Cent. Eur. J. Math., 10, 6, 2019-2032 (2012) ·Zbl 1268.35056 |
[29] | Gwiazda, P.; Skrzypczak, I.; Zatorska-Goldstein, A., Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space, J. Differ. Equ., 264, 1, 341-377 (2018) ·Zbl 1376.35046 |
[30] | Gwiazda, P.; Świerczewska-Gwiazda, A., On non-Newtonian fluids with a property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci., 18, 7, 1073-1092 (2008) ·Zbl 1152.35332 |
[31] | Gwiazda, P.; Świerczewska-Gwiazda, A., On steady non-Newtonian fluids with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal., 32, 1, 103-113 (2008) ·Zbl 1172.35352 |
[32] | Gwiazda, P.; Świerczewska-Gwiazda, A., Parabolic equations in anisotropic Orlicz spaces with general \(N\)-functions, (Parabolic Problems. Parabolic Problems, Progr. Nonlinear Differential Equations Appl., vol. 80 (2011), Birkhäuser/Springer Basel AG: Birkhäuser/Springer Basel AG Basel), 301-311 ·Zbl 1250.35122 |
[33] | Gwiazda, P.; Świerczewska-Gwiazda, A.; Wróblewska, A., Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci., 33, 2, 125-137 (2010) ·Zbl 1180.35427 |
[34] | Gwiazda, P.; Wittbold, P.; Wróblewska, A.; Zimmermann, A., Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differ. Equ., 253, 2, 635-666 (2012) ·Zbl 1245.35039 |
[35] | Gwiazda, P.; Wittbold, P.; Wróblewska-Kamińska, A.; Zimmermann, A., Corrigendum to “Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces”, J. Differ. Equ.. J. Differ. Equ., J. Differ. Equ., 253, 9, 2734-2738 (2012) ·Zbl 1255.35107 |
[36] | Gwiazda, P.; Wittbold, P.; Wróblewska-Kamińska, A.; Zimmermann, A., Renormalized solutions to nonlinear parabolic problems in generalized Musielak-Orlicz spaces, Nonlinear Anal., 129, 1-36 (2015) ·Zbl 1331.35173 |
[37] | Harjulehto, P.; Hästö, P.; Karppinen, A., Local higher integrability of the gradient of a quasiminimizer under generalized Orlicz growth conditions, Nonlinear Anal., 177, 543-552 (2018) ·Zbl 1403.49034 |
[38] | Harjulehto, P.; Hästö, P.; Klén, R., Generalized Orlicz spaces and related PDE, Nonlinear Anal., 143, 155-173 (2016) ·Zbl 1360.46029 |
[39] | Harjulehto, P.; Hästö, P.; Toivanen, O., Hölder regularity of quasiminimizers under generalized growth conditions, Calc. Var. Partial Differ. Equ., 56, 22 (2017) ·Zbl 1366.35036 |
[40] | P. Harjulehto, P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, in press.; P. Harjulehto, P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, in press. ·Zbl 1436.46002 |
[41] | Lavrentiev, M., Sur quelques problèmes du calcul des variations, Ann. Mat. Pura Appl., 41, 107-124 (1927) |
[42] | Le, V. K., On second order elliptic equations and variational inequalities with anisotropic principal operators, Topol. Methods Nonlinear Anal., 44, 1, 41-72 (2014) ·Zbl 1376.35050 |
[43] | Maeda, F.-Y.; Mizuta, Y.; Ohno, T.; Shimomura, T., Approximate identities and Young type inequalities in Musielak-Orlicz spaces, Czechoslov. Math. J., 63(138), 4, 933-948 (2013) ·Zbl 1313.46041 |
[44] | Maeda, F.-Y.; Mizuta, Y.; Ohno, T.; Shimomura, T., Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math., 137, 1, 76-96 (2013) ·Zbl 1267.46045 |
[45] | Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., 105, 3, 267-284 (1989) ·Zbl 0667.49032 |
[46] | Marcellini, P., Regularity and existence of solutions of elliptic equations with \(p, q\)-growth conditions, J. Differ. Equ., 90, 1, 1-30 (1991) ·Zbl 0724.35043 |
[47] | Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034 (1983), Springer-Verlag: Springer-Verlag Berlin ·Zbl 0557.46020 |
[48] | Mustonen, V.; Tienari, M., On monotone-like mappings in Orlicz-Sobolev spaces, Math. Bohem., 124, 2-3, 255-271 (1999) ·Zbl 0940.47042 |
[49] | Novotný, A.; Straškraba, I., Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and its Applications, vol. 27 (2004), Oxford University Press: Oxford University Press Oxford ·Zbl 1088.35051 |
[50] | Skaff, M. S., Vector valued Orlicz spaces generalized \(N\)-functions. I, Pac. J. Math., 28, 193-206 (1969) ·Zbl 0176.11002 |
[51] | Skaff, M. S., Vector valued Orlicz spaces generalized \(N\)-functions. II, Pac. J. Math., 28, 413-430 (1969) ·Zbl 0176.11003 |
[52] | Świerczewska-Gwiazda, A., Nonlinear parabolic problems in Musielak-Orlicz spaces, Nonlinear Anal., 98, 48-65 (2014) ·Zbl 1286.35070 |
[53] | Trudinger, N. S., An imbedding theorem for \(H_0(G, \Omega)\) spaces, Stud. Math., 50, 17-30 (1974) ·Zbl 0247.46052 |
[54] | Wróblewska, A., Steady flow of non-Newtonian fluids—monotonicity methods in generalized Orlicz spaces, Nonlinear Anal., 72, 11, 4136-4147 (2010) ·Zbl 1200.35234 |
[55] | Zhikov, V. V., On Lavrentiev’s phenomenon, Russ. J. Math. Phys., 3, 2, 249-269 (1995) ·Zbl 0910.49020 |
[56] | Zhikov, V. V., On some variational problems, Russ. J. Math. Phys., 5, 1, 105-116 (1998), 1997 ·Zbl 0917.49006 |
[57] | Zhikov, V. V., On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. (N.Y.), 173, 5, 463-570 (2011), Problems in Mathematical Analysis, No. 54 ·Zbl 1279.49005 |