Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

Segmentation of 3D articulated components by slice-based vertex-weighted Reeb graph.(English)Zbl 1417.68264

Barcucci, Elena (ed.) et al., Discrete geometry for computer imagery. 18th IAPR international conference, DGCI 2014, Siena, Italy, September 10–12, 2014. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 8668, 370-383 (2014).
Summary: A fast and efficient algorithm for segmentation of the articulated components of 3D objects is proposed. The algorithm is marked by several novel features, such as DCEL-based fast orthogonal slicing, weighted Reeb graph with slice areas as vertex weights, and graph cut by exponential averaging. Each of the three sets of orthogonal slices obtained from the object is represented by a vertex-weighted Reeb graph of low complexity, as the slicing is done with an appropriate grid resolution. Each linear subgraph in a Reeb graph is traversed from its leaf node up to an articulation node or up to a node whose weight exceeds a dynamically-set threshold, based on exponential averaging of the predecessor weights in the concerned subgraph. The nodes visited in each linear subgraph are marked by a unique component number, thereby helping the inverse mapping for marking the articulated regions during final segmentation. Theoretical analysis shows that the algorithm runs faster for objects with smaller surface area and for larger grid resolutions. The algorithm is stable, invariant to rotation, and leads to natural segmentation, as evidenced by experimentation with a varied dataset.
For the entire collection see [Zbl 1295.68017].

MSC:

68U10 Computing methodologies for image processing
57M15 Relations of low-dimensional topology with graph theory

Cite

© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp