[1] | Albiac, F.; Kalton, N., Topics in Banach space theory. 2nd edn, 2016, Springer: New York ·Zbl 1352.46002 |
[2] | Ara, P.; Li, K.; Lledó, F.; Wu, J., Amenability and uniform Roe algebras, J. Math. Anal. Appl., 459, 686-716, 2018 ·Zbl 1393.46038 |
[3] | Brodzki, J.; Niblo, G. A.; Wright, N., Property A, partial translation structures, and uniform embeddings in groups, J. Lond. Math. Soc., 76, 479-497, 2007 ·Zbl 1139.46045 |
[4] | Brown, L. G.; Green, P.; Rieffel, M. A., Stable isomorphism and strong Morita equivalence of \(C^\ast \)‐algebras, Pacific J. Math., 71, 349-363, 1977 ·Zbl 0362.46043 |
[5] | Brown, N.; Ozawa, N., \(C^*\)‐Algebras and finite‐dimensional approximations, 2008, American Mathematical Society: Providence, RI ·Zbl 1160.46001 |
[6] | Carlsen, T. M.; Ruiz, E.; Sims, A., Equivalence and stable isomorphism of groupoids, and diagonal‐preserving stable isomorphisms of graph \(C^\ast \)‐algebras and Leavitt path algebras, Proc. Amer. Math. Soc., 145, 1581-1592, 2017 ·Zbl 1368.46042 |
[7] | Chernoff, P. R., Representations, automorphisms, and derivations of some operator algebras, J. Funct. Anal., 12, 275-289, 1973 ·Zbl 0252.46086 |
[8] | Defant, A.; Floret, K., Tensor norms and operator ideals, 1993, North‐Holland Publishing: Amsterdam ·Zbl 0774.46018 |
[9] | Dymarz, T., Bilipschitz equivalence is not equivalent to quasi‐isometric equivalence for finitely generated groups, Duke Math. J., 154, 509-526, 2010 ·Zbl 1277.20044 |
[10] | Ewert, E. E.; Meyer, R., Coarse geometry and topological phases, 2018 |
[11] | Exel, R., Reconstructing a totally disconnected groupoid from its ample semigroup, Proc. Amer. Math. Soc., 138, 2991-3001, 2010 ·Zbl 1195.22002 |
[12] | Guentner, E.; Kaminker, J., Exactness and the Novikov conjecture, Topology, 41, 411-418, 2002 ·Zbl 0992.58002 |
[13] | Guentner, E.; Tessera, R.; Yu, G., A notion of geometric complexity and its application to topological rigidity, Invent. Math., 189, 315-357, 2012 ·Zbl 1257.57028 |
[14] | Higson, N.; Roe, J., Amenable group actions and the Novikov conjecture, J. reine angew. Math., 519, 143-153, 2000 ·Zbl 0964.55015 |
[15] | Kadison, R. V., Isometries of operator algebras, Ann. of Math., 54, 325-338, 1951 ·Zbl 0045.06201 |
[16] | Kellerhals, J.; Monod, N.; Rørdam, M., Non‐supramenable groups acting on locally compact spaces, Doc. Math., 18, 1597-1626, 2013 ·Zbl 1290.46061 |
[17] | Kubota, Y., Controlled topological phases and bulk‐edge correspondence, Comm. Math. Phys., 349, 493-525, 2017 ·Zbl 1357.82013 |
[18] | Lamperti, J., On the isometries of certain function‐spaces, Pacific J. Math., 8, 459-466, 1958 ·Zbl 0085.09702 |
[19] | Li, X., Constructing Cartan subalgebras in classifiable stably finite \(C^\ast \)‐algebras, 2018 |
[20] | Li, K.; Liao, H.‐C., Classification of uniform Roe algebras of locally finite groups, J. Operator Theory, 80, 25-46, 2018 ·Zbl 1465.46061 |
[21] | Li, K.; Willett, R., Low‐dimensional properties of uniform Roe algebras, J. Lond. Math. Soc., 97, 98-124, 2018 ·Zbl 1436.46055 |
[22] | de Mendonça Braga, B.; Farah, I., On the rigidity of uniform Roe algebras over uniformly locally finite coarse spaces, 2018 |
[23] | Ozawa, N., Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math., 330, 691-695, 2000 ·Zbl 0953.43001 |
[24] | Palmer, T. W., Banach algebras and the general theory of *‐algebras, 1994, Cambridge University Press: Cambridge ·Zbl 0809.46052 |
[25] | Phillips, N. C., Analogs of Cuntz algebras on \(L^p\) spaces, 2013 |
[26] | Phillips, N. C., Crossed products of \(L^p\) operator algebras and the \(K\)‐theory of Cuntz algebras on \(L^p\) spaces, 2013 |
[27] | Pitt, H. R., A note on bilinear forms, J. Lond. Math. Soc., 11, 174-180, 1936 ·JFM 62.0209.01 |
[28] | Renault, J., Cartan subalgebras in \(C^\ast \)‐algebras, Irish Math. Soc. Bull., 61, 29-63, 2008 ·Zbl 1175.46050 |
[29] | Roe, J., Lectures on coarse geometry, 2003, American Mathematical Society: Providence, RI ·Zbl 1042.53027 |
[30] | Rørdam, M.; Sierakowski, A., Purely infinite \(C^\ast \)‐algebras arising from crossed products, Ergodic Theory Dynam. Systems, 32, 273-293, 2012 ·Zbl 1252.46061 |
[31] | Scarparo, E., Characterizations of locally finite actions of groups on sets, Glasg. Math. J., 60, 285-288, 2018 ·Zbl 1387.43002 |
[32] | Skandalis, G.; Tu, J.‐L.; Yu, G., The coarse Baum‐Connes conjecture and groupoids, Topology, 41, 807-834, 2002 ·Zbl 1033.19003 |
[33] | Špakula, J., Uniform \(K\)‐homology theory, J. Funct. Anal., 257, 88-121, 2009 ·Zbl 1173.46049 |
[34] | Špakula, J.; Willett, R., On rigidity of Roe algebras, Adv. Math., 249, 289-310, 2013 ·Zbl 1295.46051 |
[35] | Špakula, J.; Willett, R., A metric approach to limit operators, Trans. Amer. Math. Soc., 369, 263-308, 2017 ·Zbl 1380.47024 |
[36] | Wei, S., On the quasidiagonality of Roe algebras, Sci. China Math., 54, 1011-1018, 2011 ·Zbl 1229.46039 |
[37] | White, S.; Willett, R., Cartan subalgebras in uniform Roe algebras ·Zbl 1478.46070 |
[38] | Whyte, K., Amenability, bilipschitz equivalence, and the von Neumann conjecture, Duke Math. J., 99, 93-112, 1999 ·Zbl 1017.54017 |
[39] | Willett, R., Some notes on property A, Limits of graphs in group theory and computer science, 191-281, 2009, EPFL Press: Lausanne ·Zbl 1201.19002 |
[40] | Winter, W.; Zacharias, J., The nuclear dimension of \(C^*\)‐algebras, Adv. Math., 224, 461-498, 2010 ·Zbl 1201.46056 |
[41] | Yu, G., Coarse Baum‐Connes conjecture, K‐Theory, 9, 199-221, 1995 ·Zbl 0829.19004 |
[42] | Yu, G., Localization algebras and the coarse Baum‐Connes conjecture, K‐Theory, 11, 307-318, 1997 ·Zbl 0888.46047 |
[43] | Yu, G., The coarse Baum‐Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., 139, 201-240, 2000 ·Zbl 0956.19004 |