Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Rigidity of \(\ell^p\) Roe-type algebras.(English)Zbl 1417.46037

The authors consider the following \(\ell_p\)-analogue of Roe algebras:
“Let \((X,d)\) be a metric space with bounded geometry and \(1\leq p<\infty\). For an operator \(T=(T_{xy})_{x,y\in X}\in B(\ell^p(X))\), where \(T_{xy}=(T\delta_y)(x)\), we define the propagation of \(T\) to be \[ \text{prop}(T)=\sup\{ d(x,y):x,y\in X,\,T_{xy}\neq 0 \}\in[0,\infty]. \] We denote by \(\mathbb{C}_u^p[X]\) the unital algebra of all bounded operators on \(\ell^p(X)\) with finite propagation. The \(\ell^p\) uniform Roe algebra, denoted by \(B^p_u(X)\), is defined to be the operator norm closure of \(\mathbb{C}_u^p[X]\) in \(B(\ell^p(X))\).”
Metric spaces considered in the paper are not assumed to have Yu’s property \(A\) or finite decomposition complexity.
The main result of the paper on the uniform Roe algebras is (Theorem 1.7):
“Let \(X\) and \(Y\) be metric spaces with bounded geometry, and let \(p\in [1,\infty)\setminus\{2\}\).
(1)
\(X\) and \(Y\) are bijectively coarsely equivalent if and only if their \(\ell^p\) uniform Roe algebras are isometrically isomorphic.
(2)
\(X\) and \(Y\) are coarsely equivalent if and only if their \(\ell^p\) uniform Roe algebras are stably isometrically isomorphic.”
The authors also consider other Roe-type algebras and prove similar results for them.

MSC:

46H20 Structure, classification of topological algebras
46B85 Embeddings of discrete metric spaces into Banach spaces; applications in topology and computer science
51K05 General theory of distance geometry
46H15 Representations of topological algebras

Cite

References:

[1]Albiac, F.; Kalton, N., Topics in Banach space theory. 2nd edn, 2016, Springer: New York ·Zbl 1352.46002
[2]Ara, P.; Li, K.; Lledó, F.; Wu, J., Amenability and uniform Roe algebras, J. Math. Anal. Appl., 459, 686-716, 2018 ·Zbl 1393.46038
[3]Brodzki, J.; Niblo, G. A.; Wright, N., Property A, partial translation structures, and uniform embeddings in groups, J. Lond. Math. Soc., 76, 479-497, 2007 ·Zbl 1139.46045
[4]Brown, L. G.; Green, P.; Rieffel, M. A., Stable isomorphism and strong Morita equivalence of \(C^\ast \)‐algebras, Pacific J. Math., 71, 349-363, 1977 ·Zbl 0362.46043
[5]Brown, N.; Ozawa, N., \(C^*\)‐Algebras and finite‐dimensional approximations, 2008, American Mathematical Society: Providence, RI ·Zbl 1160.46001
[6]Carlsen, T. M.; Ruiz, E.; Sims, A., Equivalence and stable isomorphism of groupoids, and diagonal‐preserving stable isomorphisms of graph \(C^\ast \)‐algebras and Leavitt path algebras, Proc. Amer. Math. Soc., 145, 1581-1592, 2017 ·Zbl 1368.46042
[7]Chernoff, P. R., Representations, automorphisms, and derivations of some operator algebras, J. Funct. Anal., 12, 275-289, 1973 ·Zbl 0252.46086
[8]Defant, A.; Floret, K., Tensor norms and operator ideals, 1993, North‐Holland Publishing: Amsterdam ·Zbl 0774.46018
[9]Dymarz, T., Bilipschitz equivalence is not equivalent to quasi‐isometric equivalence for finitely generated groups, Duke Math. J., 154, 509-526, 2010 ·Zbl 1277.20044
[10]Ewert, E. E.; Meyer, R., Coarse geometry and topological phases, 2018
[11]Exel, R., Reconstructing a totally disconnected groupoid from its ample semigroup, Proc. Amer. Math. Soc., 138, 2991-3001, 2010 ·Zbl 1195.22002
[12]Guentner, E.; Kaminker, J., Exactness and the Novikov conjecture, Topology, 41, 411-418, 2002 ·Zbl 0992.58002
[13]Guentner, E.; Tessera, R.; Yu, G., A notion of geometric complexity and its application to topological rigidity, Invent. Math., 189, 315-357, 2012 ·Zbl 1257.57028
[14]Higson, N.; Roe, J., Amenable group actions and the Novikov conjecture, J. reine angew. Math., 519, 143-153, 2000 ·Zbl 0964.55015
[15]Kadison, R. V., Isometries of operator algebras, Ann. of Math., 54, 325-338, 1951 ·Zbl 0045.06201
[16]Kellerhals, J.; Monod, N.; Rørdam, M., Non‐supramenable groups acting on locally compact spaces, Doc. Math., 18, 1597-1626, 2013 ·Zbl 1290.46061
[17]Kubota, Y., Controlled topological phases and bulk‐edge correspondence, Comm. Math. Phys., 349, 493-525, 2017 ·Zbl 1357.82013
[18]Lamperti, J., On the isometries of certain function‐spaces, Pacific J. Math., 8, 459-466, 1958 ·Zbl 0085.09702
[19]Li, X., Constructing Cartan subalgebras in classifiable stably finite \(C^\ast \)‐algebras, 2018
[20]Li, K.; Liao, H.‐C., Classification of uniform Roe algebras of locally finite groups, J. Operator Theory, 80, 25-46, 2018 ·Zbl 1465.46061
[21]Li, K.; Willett, R., Low‐dimensional properties of uniform Roe algebras, J. Lond. Math. Soc., 97, 98-124, 2018 ·Zbl 1436.46055
[22]de Mendonça Braga, B.; Farah, I., On the rigidity of uniform Roe algebras over uniformly locally finite coarse spaces, 2018
[23]Ozawa, N., Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math., 330, 691-695, 2000 ·Zbl 0953.43001
[24]Palmer, T. W., Banach algebras and the general theory of *‐algebras, 1994, Cambridge University Press: Cambridge ·Zbl 0809.46052
[25]Phillips, N. C., Analogs of Cuntz algebras on \(L^p\) spaces, 2013
[26]Phillips, N. C., Crossed products of \(L^p\) operator algebras and the \(K\)‐theory of Cuntz algebras on \(L^p\) spaces, 2013
[27]Pitt, H. R., A note on bilinear forms, J. Lond. Math. Soc., 11, 174-180, 1936 ·JFM 62.0209.01
[28]Renault, J., Cartan subalgebras in \(C^\ast \)‐algebras, Irish Math. Soc. Bull., 61, 29-63, 2008 ·Zbl 1175.46050
[29]Roe, J., Lectures on coarse geometry, 2003, American Mathematical Society: Providence, RI ·Zbl 1042.53027
[30]Rørdam, M.; Sierakowski, A., Purely infinite \(C^\ast \)‐algebras arising from crossed products, Ergodic Theory Dynam. Systems, 32, 273-293, 2012 ·Zbl 1252.46061
[31]Scarparo, E., Characterizations of locally finite actions of groups on sets, Glasg. Math. J., 60, 285-288, 2018 ·Zbl 1387.43002
[32]Skandalis, G.; Tu, J.‐L.; Yu, G., The coarse Baum‐Connes conjecture and groupoids, Topology, 41, 807-834, 2002 ·Zbl 1033.19003
[33]Špakula, J., Uniform \(K\)‐homology theory, J. Funct. Anal., 257, 88-121, 2009 ·Zbl 1173.46049
[34]Špakula, J.; Willett, R., On rigidity of Roe algebras, Adv. Math., 249, 289-310, 2013 ·Zbl 1295.46051
[35]Špakula, J.; Willett, R., A metric approach to limit operators, Trans. Amer. Math. Soc., 369, 263-308, 2017 ·Zbl 1380.47024
[36]Wei, S., On the quasidiagonality of Roe algebras, Sci. China Math., 54, 1011-1018, 2011 ·Zbl 1229.46039
[37]White, S.; Willett, R., Cartan subalgebras in uniform Roe algebras ·Zbl 1478.46070
[38]Whyte, K., Amenability, bilipschitz equivalence, and the von Neumann conjecture, Duke Math. J., 99, 93-112, 1999 ·Zbl 1017.54017
[39]Willett, R., Some notes on property A, Limits of graphs in group theory and computer science, 191-281, 2009, EPFL Press: Lausanne ·Zbl 1201.19002
[40]Winter, W.; Zacharias, J., The nuclear dimension of \(C^*\)‐algebras, Adv. Math., 224, 461-498, 2010 ·Zbl 1201.46056
[41]Yu, G., Coarse Baum‐Connes conjecture, K‐Theory, 9, 199-221, 1995 ·Zbl 0829.19004
[42]Yu, G., Localization algebras and the coarse Baum‐Connes conjecture, K‐Theory, 11, 307-318, 1997 ·Zbl 0888.46047
[43]Yu, G., The coarse Baum‐Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., 139, 201-240, 2000 ·Zbl 0956.19004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp