Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Supercharacters of queer Lie superalgebras.(English)Zbl 1417.17012

Summary: Let \(\mathfrak{g} = \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}\) be the queer Lie superalgebra and let \(L\) be a finite-dimensional non-trivial irreducible \(\mathfrak{g}\)-module. Restricting the \(\mathfrak{g}\)-action on \(L\) to \(\mathfrak{g}_{\overline{0}}\), we show that the space of \(\mathfrak{g}_{\overline{0}}\)-invariants \(L^{\mathfrak{g}_{\overline{0}}}\) is trivial. As a consequence, we establish a conjecture first formulated by Gorelik, Grantcharov and Mazorchuk on the triviality of the supercharacter of irreducible \(\mathfrak{g}\)-modules in the case when the modules are finite dimensional.{
©American Institute of Physics}

MSC:

17B20 Simple, semisimple, reductive (super)algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

Cite

References:

[1]Brundan, J., Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra \(<mml:math display=''inline`` overflow=''scroll``><mml:mi mathvariant=''fraktur``>q\), Adv. Math., 182, 28-77 (2004) ·Zbl 1048.17003 ·doi:10.1016/s0001-8708(03)00073-2
[2]Brundan, J.; Davidson, N., Type A blocks of super category \(<mml:math display=''inline`` overflow=''scroll``><mml:mi mathvariant=''script``>O\), J. Algebra, 473, 447-480 (2017) ·Zbl 1396.17005 ·doi:10.1016/j.jalgebra.2016.11.022
[3]Chen, C.-W.; Cheng, S.-J., Quantum group of type A and representations of queer Lie superalgebra, J. Algebra, 473, 1-28 (2017) ·Zbl 1406.17013 ·doi:10.1016/j.jalgebra.2016.10.017
[4]Cheng, S.-J.; Kwon, J.-H., Finite-dimensional half-integer weight modules over queer Lie superalgebras, Commun. Math. Phys., 346, 945-965 (2016) ·Zbl 1406.17017 ·doi:10.1007/s00220-015-2544-0
[5]Cheng, S.-J.; Kwon, J.-H.; Wang, W., Character formulae for queer Lie superalgebras and canonical bases of types A/C, Commun. Math. Phys., 352, 1091-1119 (2017) ·Zbl 1406.17014 ·doi:10.1007/s00220-016-2809-2
[6]Cheng, S.-J.; Wang, W., Dualities and Representations of Lie Superalgebras (2012) ·Zbl 1271.17001
[7]Gorelik, M.; Grantcharov, D., Bounded highest weight modules over \(<mml:math display=''inline`` overflow=''scroll``><mml:mi mathvariant=''fraktur``>q\), Int. Math. Res. Not., 22, 6111-6154 (2014) ·Zbl 1360.17009 ·doi:10.1093/imrn/rnt147
[8]Gorelik, M.; Grantcharov, D., Q-type Lie superalgebras, Advances in Lie Superalgebras, 67-89 (2014) ·Zbl 1344.17006
[9]Penkov, I., Characters of typical irreducible finite-dimensional \(<mml:math display=''inline`` overflow=''scroll``><mml:mi mathvariant=''fraktur``>q\)-modules, Funct. Anal. App., 20, 30-37 (1986) ·Zbl 0595.17003 ·doi:10.1007/bf01077312
[10]Penkov, I.; Serganova, V., Characters of irreducible G-modules and cohomology of G/P for the supergroup G = Q(N), J. Math. Sci., 84, 1382-1412 (1997) ·Zbl 0920.17003 ·doi:10.1007/bf02399196
[11]Santos, J., Foncteurs de Zuckerman pour les superalgébres de Lie, J. Lie Theory, 9, 69-112 (1999) ·Zbl 0929.17002
[12]Stembridge, J. R., Shifted tableaux and projective representations of symmetric groups, Adv. Math., 74, 87-134 (1989) ·Zbl 0677.20012 ·doi:10.1016/0001-8708(89)90005-4
[13]Sergeev, A., The centre of enveloping algebra for Lie superalgebra \(<mml:math display=''inline`` overflow=''scroll``>\), Lett. Math. Phys., 7, 177-179 (1983) ·Zbl 0539.17003 ·doi:10.1007/bf00400431
[14]Sergeev, A., The tensor algebra of the identity representation as a module over the Lie superalgebras gl(n,m) and Q(n), Math. USSR Sb., 51, 419-427 (1985) ·Zbl 0573.17002 ·doi:10.1070/sm1985v051n02abeh002867
[15]Su, Y.; Zhang, R. B., Character and dimension formulae for queer Lie superalgebra, Commun. Math. Phys., 333, 1465-1481 (2015) ·Zbl 1339.17009 ·doi:10.1007/s00220-014-2209-4
[16]2010 Mathematics Subject Classification, 17B67.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp