Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Vertex operator algebras and 3d \( \mathcal{N} = 4 \) gauge theories.(English)Zbl 1416.81185

Summary: We introduce two mirror constructions of Vertex Operator Algebras associated to special boundary conditions in 3d \( \mathcal{N}= 4 \) gauge theories. We conjecture various relations between these boundary VOA’s and properties of the (topologically twisted) bulk theories. We discuss applications to the Symplectic Duality and Geometric Langlands programs.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T45 Topological field theories in quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

Cite

References:

[1]C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys.B 431 (1994) 3 [hep-th/9408074] [INSPIRE]. ·Zbl 0964.81522 ·doi:10.1016/0550-3213(94)90097-3
[2]N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math.244 (2006) 525 [hep-th/0306238] [INSPIRE]. ·Zbl 1233.14029 ·doi:10.1007/0-8176-4467-9_15
[3]L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys.91 (2010) 167 [arXiv:0906.3219] [INSPIRE]. ·Zbl 1185.81111 ·doi:10.1007/s11005-010-0369-5
[4]C. Beem, L. Rastelli and B.C. van Rees, \[W \mathcal{W}\] symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE]. ·Zbl 1397.81290 ·doi:10.1007/JHEP05(2015)017
[5]C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys.336 (2015) 1359 [arXiv:1312.5344] [INSPIRE]. ·Zbl 1320.81076 ·doi:10.1007/s00220-014-2272-x
[6]C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, JHEP05 (2015) 020 [arXiv:1408.6522] [INSPIRE]. ·Zbl 1388.81766 ·doi:10.1007/JHEP05(2015)020
[7]D. Gaiotto and M. Rapčák, Vertex Algebras at the Corner, JHEP01 (2019) 160 [arXiv:1703.00982] [INSPIRE]. ·Zbl 1409.81148 ·doi:10.1007/JHEP01(2019)160
[8]D. Gaiotto, Twisted compactifications of 3dN \[\mathcal{N} = 4\] theories and conformal blocks, JHEP02 (2019) 061 [arXiv:1611.01528] [INSPIRE]. ·Zbl 1411.81192 ·doi:10.1007/JHEP02(2019)061
[9]A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric Langlands Program, Commun. Num. Theor. Phys.1 (2007) 1 [hep-th/0604151] [INSPIRE]. ·Zbl 1128.22013 ·doi:10.4310/CNTP.2007.v1.n1.a1
[10]D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys.13 (2009) 721 [arXiv:0807.3720] [INSPIRE]. ·Zbl 1206.81082 ·doi:10.4310/ATMP.2009.v13.n3.a5
[11]D. Gaiotto, S-duality of boundary conditions and the Geometric Langlands program, Proc. Symp. Pure Math.98 (2018) 139 [arXiv:1609.09030] [INSPIRE]. ·Zbl 1452.81163 ·doi:10.1090/pspum/098/01721
[12]T. Creutzig and D. Gaiotto, Vertex Algebras for S-duality, arXiv:1708.00875 [INSPIRE]. ·Zbl 1481.17041
[13]E. Witten, Topological Quantum Field Theory, Commun. Math. Phys.117 (1988) 353 [INSPIRE]. ·Zbl 0656.53078 ·doi:10.1007/BF01223371
[14]E. Witten, Topological σ-models, Commun. Math. Phys.118 (1988) 411 [INSPIRE]. ·Zbl 0674.58047 ·doi:10.1007/BF01466725
[15]L. Rozansky and E. Witten, HyperKähler geometry and invariants of three manifolds, Selecta Math.3 (1997) 401 [hep-th/9612216] [INSPIRE]. ·Zbl 0908.53027 ·doi:10.1007/s000290050016
[16]A. Kapustin and K. Vyas, A-Models in Three and Four Dimensions, arXiv:1002.4241 [INSPIRE].
[17]A. Kapustin, L. Rozansky and N. Saulina, Three-dimensional topological field theory and symplectic algebraic geometry I, Nucl. Phys.B 816 (2009) 295 [arXiv:0810.5415] [INSPIRE]. ·Zbl 1194.81224 ·doi:10.1016/j.nuclphysb.2009.01.027
[18]A. Kapustin and L. Rozansky, Three-dimensional topological field theory and symplectic algebraic geometry II, Commun. Num. Theor. Phys.4 (2010) 463 [arXiv:0909.3643] [INSPIRE]. ·Zbl 1220.81169 ·doi:10.4310/CNTP.2010.v4.n3.a1
[19]M. Bullimore, T. Dimofte, D. Gaiotto and J. Hilburn, Boundaries, Mirror Symmetry and Symplectic Duality in 3dN \[\mathcal{N} = 4\] Gauge Theory, JHEP10 (2016) 108 [arXiv:1603.08382] [INSPIRE]. ·Zbl 1390.81309 ·doi:10.1007/JHEP10(2016)108
[20]H.-J. Chung and T. Okazaki, (2, 2) and (0, 4) supersymmetric boundary conditions in 3dN \[\mathcal{N} = 4\] theories and type IIB branes, Phys. Rev.D 96 (2017) 086005 [arXiv:1608.05363] [INSPIRE].
[21]T. Dimofte, D. Gaiotto and N.M. Paquette, Dual boundary conditions in 3d SCFT’s, JHEP05 (2018) 060 [arXiv:1712.07654] [INSPIRE]. ·Zbl 1391.81157 ·doi:10.1007/JHEP05(2018)060
[22]K. Costello, T. Dimofte and D. Gaiotto, Boundary vertex algebras and holomorphic twists, to appear. ·Zbl 1549.35408
[23]E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys.121 (1989) 351 [INSPIRE]. ·Zbl 0667.57005 ·doi:10.1007/BF01217730
[24]E. Witten, Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math.50 (2011) 347 [arXiv:1001.2933] [INSPIRE]. ·Zbl 1337.81106 ·doi:10.1090/amsip/050/19
[25]D. Butson and P. Yoo, Degenerate Classical Field Theories and Boundary Theories, arXiv:1611.00311 [INSPIRE].
[26]Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP04 (2011) 007 [arXiv:1101.0557] [INSPIRE]. ·Zbl 1250.81107 ·doi:10.1007/JHEP04(2011)007
[27]A. Kapustin and B. Willett, Generalized Superconformal Index for Three Dimensional Field Theories, arXiv:1106.2484 [INSPIRE].
[28]A. Gadde, S. Gukov and P. Putrov, Walls, Lines and Spectral Dualities in 3d Gauge Theories, JHEP05 (2014) 047 [arXiv:1302.0015] [INSPIRE]. ·doi:10.1007/JHEP05(2014)047
[29]A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320 [INSPIRE]. ·Zbl 1373.81295
[30]A. Beilinson and V. Drinfeld, American Mathematical Society Colloquium Publications. Vol. 51: Chiral algebras, American Mathematical Society, Providence U.S.A. (2004). ·Zbl 1138.17300
[31]A. Braverman, M. Finkelberg and H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensionalN \[\mathcal{N} = 4\] gauge theories, II, arXiv:1601.03586 [INSPIRE]. ·Zbl 1479.81043
[32]A. Kapustin and L. Rozansky, On the relation between open and closed topological strings, Commun. Math. Phys.252 (2004) 393 [hep-th/0405232] [INSPIRE]. ·Zbl 1102.81064 ·doi:10.1007/s00220-004-1227-z
[33]K. Costello, Topological conformal field theories and Calabi-Yau categories, Adv. Math.210 (2007) 165 [math/0412149] [INSPIRE]. ·Zbl 1171.14038
[34]K. Costello, T. Creutzig and D. Gaiotto, Higgs and coulomb branches from vertex operator algebras, to appear. ·Zbl 1414.81234
[35]B. Assel and J. Gomis, Mirror Symmetry And Loop Operators, JHEP11 (2015) 055 [arXiv:1506.01718] [INSPIRE]. ·Zbl 1388.81761 ·doi:10.1007/JHEP11(2015)055
[36]D. Karabali and H.J. Schnitzer, BRST Quantization of the Gauged WZW Action and Coset Conformal Field Theories, Nucl. Phys.B 329 (1990) 649 [INSPIRE]. ·doi:10.1016/0550-3213(90)90075-O
[37]H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensionalN \[\mathcal{N} = 4\] gauge theories, I, Adv. Theor. Math. Phys.20 (2016) 595 [arXiv:1503.03676] [INSPIRE]. ·Zbl 1433.81121 ·doi:10.4310/ATMP.2016.v20.n3.a4
[38]A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP04 (1999) 021 [hep-th/9902033] [INSPIRE]. ·Zbl 0953.81097 ·doi:10.1088/1126-6708/1999/04/021
[39]E. Frenkel and D. Gaiotto, Gauge theory, vertex algebras and the geometric langlands duality, to appear. ·Zbl 1445.14024
[40]D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N = 4 Super Yang-Mills Theory, JHEP06 (2010) 097 [arXiv:0804.2907] [INSPIRE]. ·Zbl 1290.81065 ·doi:10.1007/JHEP06(2010)097
[41]K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 Superconformal Chern-Simons Theories with Hyper and Twisted Hyper Multiplets, JHEP07 (2008) 091 [arXiv:0805.3662] [INSPIRE]. ·Zbl 08012572 ·doi:10.1088/1126-6708/2008/07/091
[42]O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE]. ·Zbl 1245.81130 ·doi:10.1088/1126-6708/2008/10/091
[43]A. Kapustin and N. Saulina, Chern-Simons-Rozansky-Witten topological field theory, Nucl. Phys.B 823 (2009) 403 [arXiv:0904.1447] [INSPIRE]. ·Zbl 1196.81211 ·doi:10.1016/j.nuclphysb.2009.07.006
[44]D. Tong, The holographic dual of AdS3 × S3 × S3 × S1, JHEP04 (2014) 193 [arXiv:1402.5135] [INSPIRE]. ·doi:10.1007/JHEP04(2014)193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp