[1] | C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys.B 431 (1994) 3 [hep-th/9408074] [INSPIRE]. ·Zbl 0964.81522 ·doi:10.1016/0550-3213(94)90097-3 |
[2] | N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math.244 (2006) 525 [hep-th/0306238] [INSPIRE]. ·Zbl 1233.14029 ·doi:10.1007/0-8176-4467-9_15 |
[3] | L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys.91 (2010) 167 [arXiv:0906.3219] [INSPIRE]. ·Zbl 1185.81111 ·doi:10.1007/s11005-010-0369-5 |
[4] | C. Beem, L. Rastelli and B.C. van Rees, \[W \mathcal{W}\] symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE]. ·Zbl 1397.81290 ·doi:10.1007/JHEP05(2015)017 |
[5] | C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys.336 (2015) 1359 [arXiv:1312.5344] [INSPIRE]. ·Zbl 1320.81076 ·doi:10.1007/s00220-014-2272-x |
[6] | C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, JHEP05 (2015) 020 [arXiv:1408.6522] [INSPIRE]. ·Zbl 1388.81766 ·doi:10.1007/JHEP05(2015)020 |
[7] | D. Gaiotto and M. Rapčák, Vertex Algebras at the Corner, JHEP01 (2019) 160 [arXiv:1703.00982] [INSPIRE]. ·Zbl 1409.81148 ·doi:10.1007/JHEP01(2019)160 |
[8] | D. Gaiotto, Twisted compactifications of 3dN \[\mathcal{N} = 4\] theories and conformal blocks, JHEP02 (2019) 061 [arXiv:1611.01528] [INSPIRE]. ·Zbl 1411.81192 ·doi:10.1007/JHEP02(2019)061 |
[9] | A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric Langlands Program, Commun. Num. Theor. Phys.1 (2007) 1 [hep-th/0604151] [INSPIRE]. ·Zbl 1128.22013 ·doi:10.4310/CNTP.2007.v1.n1.a1 |
[10] | D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys.13 (2009) 721 [arXiv:0807.3720] [INSPIRE]. ·Zbl 1206.81082 ·doi:10.4310/ATMP.2009.v13.n3.a5 |
[11] | D. Gaiotto, S-duality of boundary conditions and the Geometric Langlands program, Proc. Symp. Pure Math.98 (2018) 139 [arXiv:1609.09030] [INSPIRE]. ·Zbl 1452.81163 ·doi:10.1090/pspum/098/01721 |
[12] | T. Creutzig and D. Gaiotto, Vertex Algebras for S-duality, arXiv:1708.00875 [INSPIRE]. ·Zbl 1481.17041 |
[13] | E. Witten, Topological Quantum Field Theory, Commun. Math. Phys.117 (1988) 353 [INSPIRE]. ·Zbl 0656.53078 ·doi:10.1007/BF01223371 |
[14] | E. Witten, Topological σ-models, Commun. Math. Phys.118 (1988) 411 [INSPIRE]. ·Zbl 0674.58047 ·doi:10.1007/BF01466725 |
[15] | L. Rozansky and E. Witten, HyperKähler geometry and invariants of three manifolds, Selecta Math.3 (1997) 401 [hep-th/9612216] [INSPIRE]. ·Zbl 0908.53027 ·doi:10.1007/s000290050016 |
[16] | A. Kapustin and K. Vyas, A-Models in Three and Four Dimensions, arXiv:1002.4241 [INSPIRE]. |
[17] | A. Kapustin, L. Rozansky and N. Saulina, Three-dimensional topological field theory and symplectic algebraic geometry I, Nucl. Phys.B 816 (2009) 295 [arXiv:0810.5415] [INSPIRE]. ·Zbl 1194.81224 ·doi:10.1016/j.nuclphysb.2009.01.027 |
[18] | A. Kapustin and L. Rozansky, Three-dimensional topological field theory and symplectic algebraic geometry II, Commun. Num. Theor. Phys.4 (2010) 463 [arXiv:0909.3643] [INSPIRE]. ·Zbl 1220.81169 ·doi:10.4310/CNTP.2010.v4.n3.a1 |
[19] | M. Bullimore, T. Dimofte, D. Gaiotto and J. Hilburn, Boundaries, Mirror Symmetry and Symplectic Duality in 3dN \[\mathcal{N} = 4\] Gauge Theory, JHEP10 (2016) 108 [arXiv:1603.08382] [INSPIRE]. ·Zbl 1390.81309 ·doi:10.1007/JHEP10(2016)108 |
[20] | H.-J. Chung and T. Okazaki, (2, 2) and (0, 4) supersymmetric boundary conditions in 3dN \[\mathcal{N} = 4\] theories and type IIB branes, Phys. Rev.D 96 (2017) 086005 [arXiv:1608.05363] [INSPIRE]. |
[21] | T. Dimofte, D. Gaiotto and N.M. Paquette, Dual boundary conditions in 3d SCFT’s, JHEP05 (2018) 060 [arXiv:1712.07654] [INSPIRE]. ·Zbl 1391.81157 ·doi:10.1007/JHEP05(2018)060 |
[22] | K. Costello, T. Dimofte and D. Gaiotto, Boundary vertex algebras and holomorphic twists, to appear. ·Zbl 1549.35408 |
[23] | E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys.121 (1989) 351 [INSPIRE]. ·Zbl 0667.57005 ·doi:10.1007/BF01217730 |
[24] | E. Witten, Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math.50 (2011) 347 [arXiv:1001.2933] [INSPIRE]. ·Zbl 1337.81106 ·doi:10.1090/amsip/050/19 |
[25] | D. Butson and P. Yoo, Degenerate Classical Field Theories and Boundary Theories, arXiv:1611.00311 [INSPIRE]. |
[26] | Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP04 (2011) 007 [arXiv:1101.0557] [INSPIRE]. ·Zbl 1250.81107 ·doi:10.1007/JHEP04(2011)007 |
[27] | A. Kapustin and B. Willett, Generalized Superconformal Index for Three Dimensional Field Theories, arXiv:1106.2484 [INSPIRE]. |
[28] | A. Gadde, S. Gukov and P. Putrov, Walls, Lines and Spectral Dualities in 3d Gauge Theories, JHEP05 (2014) 047 [arXiv:1302.0015] [INSPIRE]. ·doi:10.1007/JHEP05(2014)047 |
[29] | A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320 [INSPIRE]. ·Zbl 1373.81295 |
[30] | A. Beilinson and V. Drinfeld, American Mathematical Society Colloquium Publications. Vol. 51: Chiral algebras, American Mathematical Society, Providence U.S.A. (2004). ·Zbl 1138.17300 |
[31] | A. Braverman, M. Finkelberg and H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensionalN \[\mathcal{N} = 4\] gauge theories, II, arXiv:1601.03586 [INSPIRE]. ·Zbl 1479.81043 |
[32] | A. Kapustin and L. Rozansky, On the relation between open and closed topological strings, Commun. Math. Phys.252 (2004) 393 [hep-th/0405232] [INSPIRE]. ·Zbl 1102.81064 ·doi:10.1007/s00220-004-1227-z |
[33] | K. Costello, Topological conformal field theories and Calabi-Yau categories, Adv. Math.210 (2007) 165 [math/0412149] [INSPIRE]. ·Zbl 1171.14038 |
[34] | K. Costello, T. Creutzig and D. Gaiotto, Higgs and coulomb branches from vertex operator algebras, to appear. ·Zbl 1414.81234 |
[35] | B. Assel and J. Gomis, Mirror Symmetry And Loop Operators, JHEP11 (2015) 055 [arXiv:1506.01718] [INSPIRE]. ·Zbl 1388.81761 ·doi:10.1007/JHEP11(2015)055 |
[36] | D. Karabali and H.J. Schnitzer, BRST Quantization of the Gauged WZW Action and Coset Conformal Field Theories, Nucl. Phys.B 329 (1990) 649 [INSPIRE]. ·doi:10.1016/0550-3213(90)90075-O |
[37] | H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensionalN \[\mathcal{N} = 4\] gauge theories, I, Adv. Theor. Math. Phys.20 (2016) 595 [arXiv:1503.03676] [INSPIRE]. ·Zbl 1433.81121 ·doi:10.4310/ATMP.2016.v20.n3.a4 |
[38] | A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP04 (1999) 021 [hep-th/9902033] [INSPIRE]. ·Zbl 0953.81097 ·doi:10.1088/1126-6708/1999/04/021 |
[39] | E. Frenkel and D. Gaiotto, Gauge theory, vertex algebras and the geometric langlands duality, to appear. ·Zbl 1445.14024 |
[40] | D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N = 4 Super Yang-Mills Theory, JHEP06 (2010) 097 [arXiv:0804.2907] [INSPIRE]. ·Zbl 1290.81065 ·doi:10.1007/JHEP06(2010)097 |
[41] | K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 Superconformal Chern-Simons Theories with Hyper and Twisted Hyper Multiplets, JHEP07 (2008) 091 [arXiv:0805.3662] [INSPIRE]. ·Zbl 08012572 ·doi:10.1088/1126-6708/2008/07/091 |
[42] | O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP10 (2008) 091 [arXiv:0806.1218] [INSPIRE]. ·Zbl 1245.81130 ·doi:10.1088/1126-6708/2008/10/091 |
[43] | A. Kapustin and N. Saulina, Chern-Simons-Rozansky-Witten topological field theory, Nucl. Phys.B 823 (2009) 403 [arXiv:0904.1447] [INSPIRE]. ·Zbl 1196.81211 ·doi:10.1016/j.nuclphysb.2009.07.006 |
[44] | D. Tong, The holographic dual of AdS3 × S3 × S3 × S1, JHEP04 (2014) 193 [arXiv:1402.5135] [INSPIRE]. ·doi:10.1007/JHEP04(2014)193 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.