Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Limit cycles in a model of olfactory sensory neurons.(English)Zbl 1414.34041

Summary: We propose an approach to study small limit cycle bifurcations on a center manifold in analytic or smooth systems depending on parameters. We then apply it to the investigation of limit cycle bifurcations in a model of calcium oscillations in the cilia of olfactory sensory neurons and show that it can have two limit cycles: a stable cycle appearing after a Bautin (generalized Hopf) bifurcation and an unstable cycle appearing after a subcritical Hopf bifurcation.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
92C30 Physiology (general)
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C45 Invariant manifolds for ordinary differential equations

Cite

References:

[1]Bibikov, Y. N. [1979] Local Theory of Nonlinear Analytic Ordinary Differential Equations, Vol. 702 (Springer-Verlag, NY). ·Zbl 0404.34005
[2]Bonin, G. & Legault, Y. [1988] “ Comparison de la methode des constants de Lyapunov et de la bifurcation de Hopf,” Canad. Math. Bull.31, 200-209. ·Zbl 0693.34033
[3]Chicone, C. [1999] Ordinary Differential Equations with Applications (Springer-Verlag, NY). ·Zbl 0937.34001
[4]Errami, H., Eiswirth, M., Grigoriev, D., Seiler, W. M., Sturm, T. & Weber, A. [2013] “ Efficient methods to compute Hopf bifurcations in chemical reaction networks using reaction coordinates,” 15th Int. Workshop on Computer Algebra in Scientific Computing, CASC 2013, , Vol. 8136 (Springer, Cham), pp. 88-99. ·Zbl 1412.34132
[5]Errami, H., Eiswirth, M., Grigoriev, D., Seiler, W. M., Sturm, T. & Weber, A. [2015] “ Detection of Hopf bifurcations in chemical reaction networks using convex coordinates,” J. Comput. Phys.291, 279-302. ·Zbl 1349.92168
[6]Farr, W. W., Li, C., Labouriau, I. S. & Langford, W. F. [1989] “ Degenerate Hopf bifurcation formulas and Hilbert’s 16th problem,” SIAM J. Math. Anal.20, 13-30. ·Zbl 0682.58035
[7]Feinberg, M. [1987] “ Chemical reaction network structure and the stability of complex isothermal reactors: I. The deficiency zero and deficiency one theorems,” Chem. Eng. Sci.42, 2229-2268.
[8]Guckenheimer, J. & Holmes, P. [1990] Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields (Springer, NY). ·Zbl 0515.34001
[9]Kuznetsov, Y. A. [1995] Elements of Applied Bifurcation Theory (Springer, NY). ·Zbl 0829.58029
[10]Niu, W. & Wang, D. [2008a] “ Algebraic approaches to stability analysis of biological systems,” Math. Comput. Sci.1, 507-539. ·Zbl 1138.68668
[11]Niu, W. & Wang, D. [2008b] “ Algebraic analysis of stability and bifurcation of a self-assembling micelle system,” Appl. Math. Comput.219, 108-121. ·Zbl 1297.34066
[12]Pliss, V. A. [1964] “ A reduction principle in the theory of stability of motion,” Izv. Akad. Nauk SSSR, Ser. Mat.28, 1297-1324. ·Zbl 0131.31505
[13]Reidl, J., Borowski, P., Sensse, A., Starke, J., Zapotocky, M. & Eiswirth, M. [2006] “ Model of calcium oscillations due to negative feedback in olfactory cilia,” Biophys. J.90, 1147-1155.
[14]Romanovski, V. G. & Shafer, D. S. [2009] The Center and Cyclicity Problems: A Computational Algebra Approach (Birkhäuser, Basel). ·Zbl 1192.34003
[15]Shi, S. [1980] “ A concrete example of the existence of four limit cycles for planar quadratic systems,” Sci. Sin. Ser. A23, 153-158. ·Zbl 0431.34024
[16]Sijbrand, J. [1985] “ Properties of center manifolds,” Trans. Amer. Math. Soc.289, 431-469. ·Zbl 0577.34039
[17]Sturm, T., Weber, A., Abdel-Rahman, E. O. & El Kahoui, M. [2009] “ Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology,” Math. Comput. Sci.2, 493-515. ·Zbl 1205.37062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp