[1] | X. Ai, J. Chen, S. Zhang, H. Hu, Complete solutions of the sim ·Zbl 1311.11020 ·doi:10.1016/j.jnt.2014.07.009 |
[2] | M.A. Bennett, On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math. 498, 173–199 (1998) ·Zbl 1044.11011 |
[3] | W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I: the user language. J. Symb. Comput. 24(3–4), 23 ·Zbl 0898.68039 |
[4] | R.D. Carmichael, On the numerical factors ·JFM 44.0216.01 ·doi:10.2307/1967797 |
[5] | M. Cipu, Pairs of Pell equations having at most one common solution in positive integers. An. Şt. Univ. Ovidius Constanţ a Ser. Math. 15(1), 55–66 (2007) ·Zbl 1174.11032 |
[6] | M. Cipu, M. Mignotte, On the number of solutions to systems of Pell equations. J. Number Theory 125, 356–392 (2007) ·Zbl 1137.11018 ·doi:10.1016/j.jnt.2006.09.016 |
[7] | M.T. Damir, B. Faye, F. Luca, A. Tall, Members of Lucas sequences whose Euler function is a power of 2. Fibonacci Q. 52(1), 3–9 (2014) ·Zbl 1351.11015 |
[8] | N. Irmak, On solutions of the sim ·Zbl 1399.11101 ·doi:10.1007/s10998-016-0137-0 |
[9] | W. Ljunggren, Ein Satz über die ·Zbl 0056.03601 |
[10] | M. Mignotte, A. Petho, Sur les carrés dans certaines suites de Lucas. J. Théor. Nombres Bordeaux 5(2), 333–341 (1993) ·Zbl 0795.11007 ·doi:10.5802/jtnb.97 |
[11] | P.M. Voutier, Primitive divisors of Lucas and Lehmer sequences. Math. Comput. 64(201), 869–888 (1995) ·Zbl 0832.11009 ·doi:10.1090/S0025-5718-1995-1284673-6 |
[12] | P. Yuan, On th ·Zbl 1050.11031 ·doi:10.1090/S0002-9939-04-07418-0 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.