Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e.g.functions,functorial, etc.). Otherwise the search isexact.
"Topological group"Phrases (multi-words) should be set in"straight quotation marks".
au: Bourbaki & ti: AlgebraSearch forauthor andtitle. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator | allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so: Eur* J* Mat* Soc* cc: 14Search for publications in a particularsource with aMathematics SubjectClassificationcode (cc) in14.
"Partial diff* eq*" ! ellipticThenot-operator! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set to books; alternatively:j forjournal articles,a forbook articles.
py: 2000-2015 cc: (94A | 11T)Numberranges are accepted. Terms can be grouped within(parentheses).
la: chineseFind documents in a givenlanguage.ISO 639-1 language codes can also be used.

Fields

anyanywhere
aninternal document identifier
auauthor, editor
aiinternal author identifier
tititle
lalanguage
sosource
abreview, abstract
pypublication year
rvreviewer
ccMSC code
utuncontrolled term
dtdocument type (j: journal article;b: book;a: book article)

Operators

a& blogic and
a| blogic or
!ablogic not
abc*right wildcard
"ab c"phrase
(ab c)parentheses

See also ourGeneral Help.

On the determination of solutions of simultaneous Pell equations \(x^2 - (a^2 - 1) y^2 = y^2 - pz^2 = 1\).(English)Zbl 1413.11064

Summary: In this paper, we consider the simultaneous Pell equations \[x^2-(a^2-1)y^2 = 1,\]
\[y^2 - pz^2 = 1,\] where \(p\) is prime and \(a > 1\). Assuming the solutions of the Pell equation \(x^2-(a^2-1)y^2 = 1\) are \(x = x_m\) and \(y = y_m\) with \(m \geq 2\), we prove that the system has solutions only when \(m = 2\) or \(m = 3\). In the case of \(m = 3\), we show that \(p = 2\) and give the solutions of the system in terms of Pell and Pell-Lucas sequences. When \(m = 2\) and \(p \equiv 3 (\bmod 4)\), we determine the values of \(a, x, y\), and \(z\). Lastly, we show that the system has no solutions when \(p \equiv 1(\bmod 4)\).

MSC:

11D25 Cubic and quartic Diophantine equations
11B37 Recurrences
11B39 Fibonacci and Lucas numbers and polynomials and generalizations

Software:

Magma

Cite

References:

[1]X. Ai, J. Chen, S. Zhang, H. Hu, Complete solutions of the sim ·Zbl 1311.11020 ·doi:10.1016/j.jnt.2014.07.009
[2]M.A. Bennett, On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math. 498, 173–199 (1998) ·Zbl 1044.11011
[3]W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I: the user language. J. Symb. Comput. 24(3–4), 23 ·Zbl 0898.68039
[4]R.D. Carmichael, On the numerical factors ·JFM 44.0216.01 ·doi:10.2307/1967797
[5]M. Cipu, Pairs of Pell equations having at most one common solution in positive integers. An. Şt. Univ. Ovidius Constanţ a Ser. Math. 15(1), 55–66 (2007) ·Zbl 1174.11032
[6]M. Cipu, M. Mignotte, On the number of solutions to systems of Pell equations. J. Number Theory 125, 356–392 (2007) ·Zbl 1137.11018 ·doi:10.1016/j.jnt.2006.09.016
[7]M.T. Damir, B. Faye, F. Luca, A. Tall, Members of Lucas sequences whose Euler function is a power of 2. Fibonacci Q. 52(1), 3–9 (2014) ·Zbl 1351.11015
[8]N. Irmak, On solutions of the sim ·Zbl 1399.11101 ·doi:10.1007/s10998-016-0137-0
[9]W. Ljunggren, Ein Satz über die ·Zbl 0056.03601
[10]M. Mignotte, A. Petho, Sur les carrés dans certaines suites de Lucas. J. Théor. Nombres Bordeaux 5(2), 333–341 (1993) ·Zbl 0795.11007 ·doi:10.5802/jtnb.97
[11]P.M. Voutier, Primitive divisors of Lucas and Lehmer sequences. Math. Comput. 64(201), 869–888 (1995) ·Zbl 0832.11009 ·doi:10.1090/S0025-5718-1995-1284673-6
[12]P. Yuan, On th ·Zbl 1050.11031 ·doi:10.1090/S0002-9939-04-07418-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp