Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

The search for fractional order in heavy quarkonia spectra.(English)Zbl 1412.81176

Summary: Using the concept of conformable fractional derivative, we study the properties of fractional \(N\)-dimensional Schrödinger equation for the potential \(V(r) = - \frac{k}{r} + \frac{g}{r^2} + a r + b r^2\). The extended Nikiforov-Uvarov method is generalized to the fractional domain and then employed to obtain the analytic exact energy eigenvalues and eigenfunctions and their dependence on the fractional order \(\alpha\) and the dimension \(N\). To test its applicability, we apply the method on heavy quarkonia systems, and reproduce their mass spectra and fractional radial probabilities at different values of \(\alpha\) and \(N\). Comparing the mass spectra with the experimental data, we discuss to what extent fractional models can account for some features in the description of heavy quarkonia at certain dimensional space.

MSC:

81V25 Other elementary particle theory in quantum theory
26A33 Fractional derivatives and integrals
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

Cite

References:

[1]N. Brambilla et al., Heavy quarkonium physics, CERN Yellow Report, CERN-2005-005, Geneva, CERN, 2005.
[2]N. Brambilla, Current topics in heavy quarkonium physics, arXiv:1106.1051v1 [hep-ph].
[3]Al-Jamel, A., Mod. Phys. Lett. A33, 1850185 (2018).
[4]Lombard, R. J., Mares, J. and Volpe, C., J. Phys. G: Nucl. Part. Phys.34, 1879 (2007).
[5]Gupta, P. and Mehrotra, I., J. Mod. Phys.3, 1530 (2012).
[6]Burgbacher, F., Lämmerzahl, C. and Macias, A., J. Math. Phys.40, 625 (1999). ·Zbl 0960.81011
[7]Bures, M. and Siegl, P., Ann. Phys.354, 316 (2015). ·Zbl 1377.81255
[8]Dong, S.-H., Wave Equations in Higher Dimensions (Springer-Verlag, Berlin, 2011). ·Zbl 1248.81003
[9]Roy, S. and Choudhury, D. K., Can. J. Phys.94, 1282 (2016).
[10]Lahkar, J. and Choudhury, D. K., Indian J. Phys.93, 523 (2019).
[11](Kretzschmar, J.), Nucl. Part. Phys. Proc.273275, 541 (2016).
[12]Oldham, K. B. and Spanier, J., The Fractional Calculus (Academic Press, New York, 1974). ·Zbl 0428.26004
[13]Podlubny, I., Fractional Differential Equations (Academic Press, 1999). ·Zbl 0918.34010
[14]Baleanu, D., Diethelm, K., Scalas, E. and Trujillo, J. J., Fractional Calculus Models and Numerical Methods (World Scientific, 2017). ·Zbl 1347.26006
[15]Wang, J. L. and Li, H. F., Comput. Math. Appl.62, 1562 (2011). ·Zbl 1228.35267
[16]Al-Jamel, A., Al-Jamal, M. F. and El-Karamany, A., J. Vib. Control24, 2221 (2016).
[17]Goldfain, E., Commun. Nonlin. Sci. Numer. Simul.13, 1397 (2008). ·Zbl 1221.81175
[18]Al-Jamel, A., Int. J. Mod. Phys. A33, 1850164 (2018).
[19]R. Herrmann, arXiv:math-ph/0510099v4.
[20]Caputo, M. and Fabrizio, M., Prog. Fract. Differ. Appl.1, 73 (2015).
[21]Atangana, A. and Baleanu, D., Thermal Sci.20, 763 (2016).
[22]Khalil, R., Horani, M. A., Yousef, A. and Sababheh, M., J. Comput. Appl. Math.264, 65 (2014). ·Zbl 1297.26013
[23]Karayer, H., Demirhan, D. and Büyükkilic, F., Commun. Theor. Phys.66, 12 (2016). ·Zbl 1345.35130
[24]Karayer, H., Demirhan, D. and Büyükkilic, F., Turk. J. Phys.41, 551 (2017).
[25]Chung, W. S., J. Comput. Appl. Math.290, 150 (2015). ·Zbl 1336.70033
[26]Rabei, E. M. and Al Horani, M., Int. J. Mod. Phys. A33, 1850222 (2018).
[27]Nikiforov, A. F. and Uvarov, V. B., Special Functions of Mathematical Physics (Birkhauser, Basel, 1988). ·Zbl 0624.33001
[28]Karayer, H., Demirhan, D. and Büyükkilic, F., J. Math. Phys.56, 063504 (2015). ·Zbl 1322.81029
[29](Tanabashi, M.et al.), Phys. Rev. D98, 030001 (2018).
[30](Olive, K. A.et al.), Chin. Phys. C38, 090001 (2014).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp