Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Indecomposable involutive set-theoretic solutions of the Yang-Baxter equation.(English)Zbl 1412.16023

Summary: We describe the indecomposable involutive non-degenerate set-theoretic solutions of the Yang-Baxter equation as dynamical extensions of non-degenerate left cycle sets. Moreover we characterize the indecomposable dynamical extensions and we produce several examples. As an application we construct a family of finite indecomposable solutions whose structure groups have not the unique product property.

MSC:

16T25 Yang-Baxter equations
20E22 Extensions, wreath products, and other compositions of groups
20F16 Solvable groups, supersolvable groups

Cite

References:

[1]Andruskiewitsch, N.; Graña, M., From racks to pointed Hopf algebras, Adv. Math., 178, 2, 177-243 (2003) ·Zbl 1032.16028
[2]Bachiller, D.; Cedó, F.; Jespers, E.; Okniński, J., A family of irretractable square-free solutions of the Yang-Baxter equation, Forum Math., 29, 6, 1291-1306 (2017) ·Zbl 1394.16041
[3]Bachiller, F.; Cedó, D.; Vendramin, L., A characterization of finite multipermutation solutions of the Yang-Baxter equation, Publ. Mat., 62, 641-649 (2018) ·Zbl 1432.16030
[4]Castelli, M.; Catino, F.; Pinto, G., A new family of set-theoretic solutions of the Yang-Baxter equation, Commun. Algebra, 46, 4, 1622-1629 (2017) ·Zbl 1440.16038
[5]Chouraqui, F., Garside groups and Yang-Baxter equation, Commun. Algebra, 38, 12, 4441-4460 (2010) ·Zbl 1216.16023
[6]Chouraqui, F., Left orders in Garside groups, Int. J. Algebra Comput., 26, 07, 1349-1359 (2016) ·Zbl 1357.20015
[7]Chouraqui, F.; Godelle, E., Folding of set-theoretical solutions of the Yang-Baxter equation, Algebr. Represent. Theory, 15, 1277-1290 (2012) ·Zbl 1264.16038
[8]Drinfeld, V. G., On some unsolved problems in quantum group theory, (Quantum Groups. Quantum Groups, Leningrad, 1990. Quantum Groups. Quantum Groups, Leningrad, 1990, Lect. Notes Math., vol. 1510 (1992), Springer-Verlag: Springer-Verlag Berlin), 1-8 ·Zbl 0765.17014
[9]Etingof, P.; Schedler, T.; Soloviev, A., Set-theoretical solutions to the Quantum Yang-Baxter equation, Duke Math. J., 100, 2, 169-209 (1999) ·Zbl 0969.81030
[10]Gateva-Ivanova, T., A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation, J. Math. Phys., 45, 10, 3828-3858 (2004) ·Zbl 1065.16037
[11]Gateva-Ivanova, T.; Van den Bergh, M., Semigroups of I-Type, J. Algebra, 206, 1, 97-112 (1998) ·Zbl 0944.20049
[12]Godelle, E., Parabolic subgroups of Garside groups, J. Algebra, 317, 1, 1-16 (2007) ·Zbl 1173.20027
[13]Jespers, E.; Okniński, J., Monoids and groups of I-type, Algebr. Represent. Theory, 8, 5, 709-729 (2005) ·Zbl 1091.20024
[14]Jespers, E.; Okniński, J., Noetherian Semigroup Algebras (2007), Springer-Verlag: Springer-Verlag Dordrecht ·Zbl 1178.16025
[15]Lebed, V.; Vendramin, L., Homology of left non-degenerate set-theoretic solutions to the Yang-Baxter equation, Adv. Math., 304, 1219-1261 (2017) ·Zbl 1356.16027
[16]Passman, D. S., The Algebraic Structure of Group Rings (1977), Wiley-Interscience: Wiley-Interscience New York ·Zbl 0368.16003
[17]Promislow, S. D., A simple example of a torsion-free, non unique product group, Bull. Lond. Math. Soc., 20, 4, 302-304 (1988) ·Zbl 0662.20022
[18]Robinson, D. J., A Course in the Theory of Groups, vol. 80 (1996), Springer-Verlag: Springer-Verlag New York
[19]Rump, W., A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math., 193, 40-55 (2005) ·Zbl 1074.81036
[20]Rump, W., Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation, J. Algebra Appl., 7, 04, 471-490 (2008) ·Zbl 1153.81505
[21]Smoktunowicz, A.; Smoktunowicz, A., Set-theoretic solutions of the Yang-Baxter equation and new classes of R-matrices, Linear Algebra Appl., 546, 86-114 (2018) ·Zbl 1384.16025
[22]Strojnowski, A., A note on up groups, Commun. Algebra, 8, 3, 231-234 (1980) ·Zbl 0423.20005
[23]Vendramin, L., Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova, J. Pure Appl. Algebra, 220, 2064-2076 (2016) ·Zbl 1337.16028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp