Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

On equality of Hausdorff and affinity dimensions, via self-affine measures on positive subsystems.(English)Zbl 1406.28005

The authors prove, under mild technical conditions, that the affinity dimension of a planar self-affine set is equal to the supremum of the Lyapunov dimensions of self-affine measures supported by self-affine proper subsets of the original set. Moreover, the above-mentioned self-affine subsets may be chosen so as to have stronger separation properties and in such a way that the linear parts of their affinities are positive matrices. In particular, they obtain new criteria under which the Hausdorff dimension of a self-affine set equals its affinity dimension.

MSC:

28A80 Fractals
37C45 Dimension theory of smooth dynamical systems
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems

Cite

References:

[1]Bara\'nski, Krzysztof, Hausdorff dimension of self-affine limit sets with an invariant direction, Discrete Contin. Dyn. Syst., 21, 4, 1015-1023 (2008) ·Zbl 1155.28004
[2]B\'ar\'any, Bal\'azs, On the Ledrappier-Young formula for self-affine measures, Math. Proc. Cambridge Philos. Soc., 159, 3, 405-432 (2015) ·Zbl 1371.28015
[3]B\'{a}r\'{a}ny, Bal\'{a}zs; K\`“{a}enm\'”{a}ki, Antti, Ledrappier-Young formula and exact dimensionality of self-affine measures, Adv. Math., 318, 88-129 (2017) ·Zbl 1457.37032 ·doi:10.1016/j.aim.2017.07.015
[4]B\'ar\'any, Bal\'azs; Rams, Micha{\l}; Simon, K\'aroly, On the dimension of self-affine sets and measures with overlaps, Proc. Amer. Math. Soc., 144, 10, 4427-4440 (2016) ·Zbl 1350.28008
[5]BaRaSi16 Bal\'azs B\'ar\'any, Micha Rams, and K\'aroly Simon, On the dimension of triangular self-affine sets. Ergodic Theory Dynam. Systems (2017). To appear. ·Zbl 1423.37026
[6]Bochi, Jairo; Gourmelon, Nicolas, Some characterizations of domination, Math. Z., 263, 1, 221-231 (2009) ·Zbl 1181.37032
[7]Bougerol, Philippe; Lacroix, Jean, Products of random matrices with applications to Schr\`“odinger operators, Progress in Probability and Statistics 8, xii+283 pp. (1985), Birkh\'”auser Boston, Inc., Boston, MA ·Zbl 0572.60001
[8]Cassaigne, Julien; Harju, Tero; Karhum\`“aki, Juhani, On the undecidability of freeness of matrix semigroups\upshape, Dedicated to the memory of Marcel-Paul Sch\'”utzenberger, Internat. J. Algebra Comput., 9, 3-4, 295-305 (1999) ·Zbl 1029.20027
[9]Edgar, G. A., Fractal dimension of self-affine sets: some examples\upshape, Measure theory (Oberwolfach, 1990), Rend. Circ. Mat. Palermo (2) Suppl., 28, 341-358 (1992) ·Zbl 0762.28005
[10]Falconer, Kenneth; Kempton, Tom, The dimension of projections of self-affine sets and measures, Ann. Acad. Sci. Fenn. Math., 42, 1, 473-486 (2017) ·Zbl 1365.28006
[11]Falconer, Kenneth; Kempton, Tom, Planar self-affine sets with equal Hausdorff, box and affinity dimensions, Ergodic Theory Dynam. Systems, 38, 4, 1369-1388 (2018) ·Zbl 1388.37028 ·doi:10.1017/etds.2016.74
[12]Falconer, K. J., The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc., 103, 2, 339-350 (1988) ·Zbl 0642.28005
[13]Falconer, K. J., The dimension of self-affine fractals. II, Math. Proc. Cambridge Philos. Soc., 111, 1, 169-179 (1992) ·Zbl 0797.28004
[14]Feng, De-Jun; Shmerkin, Pablo, Non-conformal repellers and the continuity of pressure for matrix cocycles, Geom. Funct. Anal., 24, 4, 1101-1128 (2014) ·Zbl 1317.37035
[15]Ferguson, Andrew; Fraser, Jonathan M.; Sahlsten, Tuomas, Scaling scenery of \((\times m,\times n)\) invariant measures, Adv. Math., 268, 564-602 (2015) ·Zbl 1302.28029
[16]Ferguson, Andrew; Jordan, Thomas; Shmerkin, Pablo, The Hausdorff dimension of the projections of self-affine carpets, Fund. Math., 209, 3, 193-213 (2010) ·Zbl 1206.28011
[17]Fraser, Jonathan M., On the packing dimension of box-like self-affine sets in the plane, Nonlinearity, 25, 7, 2075-2092 (2012) ·Zbl 1247.28006
[18]Fraser, Jonathan M.; Shmerkin, Pablo, On the dimensions of a family of overlapping self-affine carpets, Ergodic Theory Dynam. Systems, 36, 8, 2463-2481 (2016) ·Zbl 1441.37031
[19]Furstenberg, Harry, Noncommuting random products, Trans. Amer. Math. Soc., 108, 377-428 (1963) ·Zbl 0203.19102
[20]Gawrychowski, Pawe\l; Gutan, Marin; Kisielewicz, Andrzej, On the problem of freeness of multiplicative matrix semigroups, Theoret. Comput. Sci., 411, 7-9, 1115-1120 (2010) ·Zbl 1193.15014
[21]Hochman, Michael, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180, 2, 773-822 (2014) ·Zbl 1337.28015
[22]Ho15 Michael Hochman, On self-similar sets with overlaps and inverse theorems for entropy in \(\mathbbR^d\), Mem. Amer. Math. Soc. (2017). To appear.
[23]Hochman, Michael; Solomyak, Boris, On the dimension of Furstenberg measure for \(SL_2(\mathbb{R})\) random matrix products, Invent. Math., 210, 3, 815-875 (2017) ·Zbl 1398.37012
[24]Hueter, Irene; Lalley, Steven P., Falconer’s formula for the Hausdorff dimension of a self-affine set in \({\bf R}^2\), Ergodic Theory Dynam. Systems, 15, 1, 77-97 (1995) ·Zbl 0867.28006
[25]Jordan, Thomas; Pollicott, Mark; Simon, K\'aroly, Hausdorff dimension for randomly perturbed self affine attractors, Comm. Math. Phys., 270, 2, 519-544 (2007) ·Zbl 1119.28004
[26]Jungers, Rapha\"el, The joint spectral radius\upshape, Theory and applications, Lecture Notes in Control and Information Sciences 385, xiv+144 pp. (2009), Springer-Verlag, Berlin
[27]K\`“aenm\'”aki, Antti, On natural invariant measures on generalised iterated function systems, Ann. Acad. Sci. Fenn. Math., 29, 2, 419-458 (2004) ·Zbl 1078.37014
[28]K\`“{a}enm\'”{a}ki, Antti; Morris, Ian D., Structure of equilibrium states on self-affine sets and strict monotonicity of affinity dimension, Proc. Lond. Math. Soc. (3), 116, 4, 929-956 (2018) ·Zbl 1391.28009 ·doi:10.1112/plms.12089
[29]K\`“aenm\'”aki, Antti; Reeve, Henry W. J., Multifractal analysis of Birkhoff averages for typical infinitely generated self-affine sets, J. Fractal Geom., 1, 1, 83-152 (2014) ·Zbl 1292.28016
[30]K\`“aenm\'”aki, Antti; Shmerkin, Pablo, Overlapping self-affine sets of Kakeya type, Ergodic Theory Dynam. Systems, 29, 3, 941-965 (2009) ·Zbl 1173.28004
[31]Klarner, David A.; Birget, Jean-Camille; Satterfield, Wade, On the undecidability of the freeness of integer matrix semigroups, Internat. J. Algebra Comput., 1, 2, 223-226 (1991) ·Zbl 0724.20036
[32]Mo17 I. D. Morris, An explicit formula for the pressure of box-like affine iterated function systems, arXiv:1703.09097, 2017. J. Fractal Geom., to appear.
[33]Rapaport, Ariel, On self-affine measures with equal Hausdorff and Lyapunov dimensions, Trans. Amer. Math. Soc., 370, 7, 4759-4783 (2018) ·Zbl 1386.37021 ·doi:10.1090/tran/7099
[34]Schief, Andreas, Separation properties for self-similar sets, Proc. Amer. Math. Soc., 122, 1, 111-115 (1994) ·Zbl 0807.28005
[35]Shmerkin, Pablo, Projections of self-similar and related fractals: a survey of recent developments. Fractal geometry and stochastics V, Progr. Probab. 70, 53-74 (2015), Birkh\"auser/Springer, Cham ·Zbl 1338.28004
[36]Shmerkin, Pablo; Solomyak, Boris, Absolute continuity of self-similar measures, their projections and convolutions, Trans. Amer. Math. Soc., 368, 7, 5125-5151 (2016) ·Zbl 1334.28013
[37]Solomyak, Boris, Measure and dimension for some fractal families, Math. Proc. Cambridge Philos. Soc., 124, 3, 531-546 (1998) ·Zbl 0927.28006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp