[1] | Bara\'nski, Krzysztof, Hausdorff dimension of self-affine limit sets with an invariant direction, Discrete Contin. Dyn. Syst., 21, 4, 1015-1023 (2008) ·Zbl 1155.28004 |
[2] | B\'ar\'any, Bal\'azs, On the Ledrappier-Young formula for self-affine measures, Math. Proc. Cambridge Philos. Soc., 159, 3, 405-432 (2015) ·Zbl 1371.28015 |
[3] | B\'{a}r\'{a}ny, Bal\'{a}zs; K\`“{a}enm\'”{a}ki, Antti, Ledrappier-Young formula and exact dimensionality of self-affine measures, Adv. Math., 318, 88-129 (2017) ·Zbl 1457.37032 ·doi:10.1016/j.aim.2017.07.015 |
[4] | B\'ar\'any, Bal\'azs; Rams, Micha{\l}; Simon, K\'aroly, On the dimension of self-affine sets and measures with overlaps, Proc. Amer. Math. Soc., 144, 10, 4427-4440 (2016) ·Zbl 1350.28008 |
[5] | BaRaSi16 Bal\'azs B\'ar\'any, Micha Rams, and K\'aroly Simon, On the dimension of triangular self-affine sets. Ergodic Theory Dynam. Systems (2017). To appear. ·Zbl 1423.37026 |
[6] | Bochi, Jairo; Gourmelon, Nicolas, Some characterizations of domination, Math. Z., 263, 1, 221-231 (2009) ·Zbl 1181.37032 |
[7] | Bougerol, Philippe; Lacroix, Jean, Products of random matrices with applications to Schr\`“odinger operators, Progress in Probability and Statistics 8, xii+283 pp. (1985), Birkh\'”auser Boston, Inc., Boston, MA ·Zbl 0572.60001 |
[8] | Cassaigne, Julien; Harju, Tero; Karhum\`“aki, Juhani, On the undecidability of freeness of matrix semigroups\upshape, Dedicated to the memory of Marcel-Paul Sch\'”utzenberger, Internat. J. Algebra Comput., 9, 3-4, 295-305 (1999) ·Zbl 1029.20027 |
[9] | Edgar, G. A., Fractal dimension of self-affine sets: some examples\upshape, Measure theory (Oberwolfach, 1990), Rend. Circ. Mat. Palermo (2) Suppl., 28, 341-358 (1992) ·Zbl 0762.28005 |
[10] | Falconer, Kenneth; Kempton, Tom, The dimension of projections of self-affine sets and measures, Ann. Acad. Sci. Fenn. Math., 42, 1, 473-486 (2017) ·Zbl 1365.28006 |
[11] | Falconer, Kenneth; Kempton, Tom, Planar self-affine sets with equal Hausdorff, box and affinity dimensions, Ergodic Theory Dynam. Systems, 38, 4, 1369-1388 (2018) ·Zbl 1388.37028 ·doi:10.1017/etds.2016.74 |
[12] | Falconer, K. J., The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc., 103, 2, 339-350 (1988) ·Zbl 0642.28005 |
[13] | Falconer, K. J., The dimension of self-affine fractals. II, Math. Proc. Cambridge Philos. Soc., 111, 1, 169-179 (1992) ·Zbl 0797.28004 |
[14] | Feng, De-Jun; Shmerkin, Pablo, Non-conformal repellers and the continuity of pressure for matrix cocycles, Geom. Funct. Anal., 24, 4, 1101-1128 (2014) ·Zbl 1317.37035 |
[15] | Ferguson, Andrew; Fraser, Jonathan M.; Sahlsten, Tuomas, Scaling scenery of \((\times m,\times n)\) invariant measures, Adv. Math., 268, 564-602 (2015) ·Zbl 1302.28029 |
[16] | Ferguson, Andrew; Jordan, Thomas; Shmerkin, Pablo, The Hausdorff dimension of the projections of self-affine carpets, Fund. Math., 209, 3, 193-213 (2010) ·Zbl 1206.28011 |
[17] | Fraser, Jonathan M., On the packing dimension of box-like self-affine sets in the plane, Nonlinearity, 25, 7, 2075-2092 (2012) ·Zbl 1247.28006 |
[18] | Fraser, Jonathan M.; Shmerkin, Pablo, On the dimensions of a family of overlapping self-affine carpets, Ergodic Theory Dynam. Systems, 36, 8, 2463-2481 (2016) ·Zbl 1441.37031 |
[19] | Furstenberg, Harry, Noncommuting random products, Trans. Amer. Math. Soc., 108, 377-428 (1963) ·Zbl 0203.19102 |
[20] | Gawrychowski, Pawe\l; Gutan, Marin; Kisielewicz, Andrzej, On the problem of freeness of multiplicative matrix semigroups, Theoret. Comput. Sci., 411, 7-9, 1115-1120 (2010) ·Zbl 1193.15014 |
[21] | Hochman, Michael, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180, 2, 773-822 (2014) ·Zbl 1337.28015 |
[22] | Ho15 Michael Hochman, On self-similar sets with overlaps and inverse theorems for entropy in \(\mathbbR^d\), Mem. Amer. Math. Soc. (2017). To appear. |
[23] | Hochman, Michael; Solomyak, Boris, On the dimension of Furstenberg measure for \(SL_2(\mathbb{R})\) random matrix products, Invent. Math., 210, 3, 815-875 (2017) ·Zbl 1398.37012 |
[24] | Hueter, Irene; Lalley, Steven P., Falconer’s formula for the Hausdorff dimension of a self-affine set in \({\bf R}^2\), Ergodic Theory Dynam. Systems, 15, 1, 77-97 (1995) ·Zbl 0867.28006 |
[25] | Jordan, Thomas; Pollicott, Mark; Simon, K\'aroly, Hausdorff dimension for randomly perturbed self affine attractors, Comm. Math. Phys., 270, 2, 519-544 (2007) ·Zbl 1119.28004 |
[26] | Jungers, Rapha\"el, The joint spectral radius\upshape, Theory and applications, Lecture Notes in Control and Information Sciences 385, xiv+144 pp. (2009), Springer-Verlag, Berlin |
[27] | K\`“aenm\'”aki, Antti, On natural invariant measures on generalised iterated function systems, Ann. Acad. Sci. Fenn. Math., 29, 2, 419-458 (2004) ·Zbl 1078.37014 |
[28] | K\`“{a}enm\'”{a}ki, Antti; Morris, Ian D., Structure of equilibrium states on self-affine sets and strict monotonicity of affinity dimension, Proc. Lond. Math. Soc. (3), 116, 4, 929-956 (2018) ·Zbl 1391.28009 ·doi:10.1112/plms.12089 |
[29] | K\`“aenm\'”aki, Antti; Reeve, Henry W. J., Multifractal analysis of Birkhoff averages for typical infinitely generated self-affine sets, J. Fractal Geom., 1, 1, 83-152 (2014) ·Zbl 1292.28016 |
[30] | K\`“aenm\'”aki, Antti; Shmerkin, Pablo, Overlapping self-affine sets of Kakeya type, Ergodic Theory Dynam. Systems, 29, 3, 941-965 (2009) ·Zbl 1173.28004 |
[31] | Klarner, David A.; Birget, Jean-Camille; Satterfield, Wade, On the undecidability of the freeness of integer matrix semigroups, Internat. J. Algebra Comput., 1, 2, 223-226 (1991) ·Zbl 0724.20036 |
[32] | Mo17 I. D. Morris, An explicit formula for the pressure of box-like affine iterated function systems, arXiv:1703.09097, 2017. J. Fractal Geom., to appear. |
[33] | Rapaport, Ariel, On self-affine measures with equal Hausdorff and Lyapunov dimensions, Trans. Amer. Math. Soc., 370, 7, 4759-4783 (2018) ·Zbl 1386.37021 ·doi:10.1090/tran/7099 |
[34] | Schief, Andreas, Separation properties for self-similar sets, Proc. Amer. Math. Soc., 122, 1, 111-115 (1994) ·Zbl 0807.28005 |
[35] | Shmerkin, Pablo, Projections of self-similar and related fractals: a survey of recent developments. Fractal geometry and stochastics V, Progr. Probab. 70, 53-74 (2015), Birkh\"auser/Springer, Cham ·Zbl 1338.28004 |
[36] | Shmerkin, Pablo; Solomyak, Boris, Absolute continuity of self-similar measures, their projections and convolutions, Trans. Amer. Math. Soc., 368, 7, 5125-5151 (2016) ·Zbl 1334.28013 |
[37] | Solomyak, Boris, Measure and dimension for some fractal families, Math. Proc. Cambridge Philos. Soc., 124, 3, 531-546 (1998) ·Zbl 0927.28006 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.