Movatterモバイル変換


[0]ホーム

URL:


×

zbMATH Open — the first resource for mathematics

from until
Reset all

Examples

GeometrySearch for the termGeometry inany field. Queries arecase-independent.
Funct*Wildcard queries are specified by* (e .g.functions,functorial, etc.). Otherwise the search isexact.''Topological group'':Phrases (multi - words) should be set in''straight quotation marks''.
au: Bourbaki & ti: AlgebraSearch forauthorBourbaki andtitleAlgebra. Theand-operator & is default and can be omitted.
Chebyshev | TschebyscheffTheor-operator| allows to search forChebyshev orTschebyscheff.
Quasi* map* py: 1989The resulting documents havepublicationyear1989.
so:Eur* J* Mat* Soc* cc:14Search for publications in a particularsource with aMathematics SubjectClassificationcode in14.
cc:*35 ! any:ellipticSearch for documents about PDEs (prefix with * to search only primary MSC); the not-operator ! eliminates all results containing the wordelliptic.
dt: b & au: HilbertThedocumenttype is set tobooks; alternatively:j forjournal articles,a forbookarticles.
py: 2000 - 2015 cc:(94A | 11T)Numberranges when searching forpublicationyear are accepted . Terms can be grouped within( parentheses).
la: chineseFind documents in a givenlanguage .ISO 639 - 1 (opens in new tab) language codes can also be used.
st: c r sFind documents that arecited, havereferences and are from asingle author.

Fields

ab Text from the summary or review (for phrases use “. ..”)
an zbMATH ID, i.e.: preliminary ID, Zbl number, JFM number, ERAM number
any Includes ab, au, cc, en, rv, so, ti, ut
arxiv arXiv preprint number
au Name(s) of the contributor(s)
br Name of a person with biographic references (to find documents about the life or work)
cc Code from the Mathematics Subject Classification (prefix with* to search only primary MSC)
ci zbMATH ID of a document cited in summary or review
db Database: documents in Zentralblatt für Mathematik/zbMATH Open (db:Zbl), Jahrbuch über die Fortschritte der Mathematik (db:JFM), Crelle's Journal (db:eram), arXiv (db:arxiv)
dt Type of the document: journal article (dt:j), collection article (dt:a), book (dt:b)
doi Digital Object Identifier (DOI)
ed Name of the editor of a book or special issue
en External document ID: DOI, arXiv ID, ISBN, and others
in zbMATH ID of the corresponding issue
la Language (use name, e.g.,la:French, orISO 639-1, e.g.,la:FR)
li External link (URL)
na Number of authors of the document in question. Interval search with “-”
pt Reviewing state: Reviewed (pt:r), Title Only (pt:t), Pending (pt:p), Scanned Review (pt:s)
pu Name of the publisher
py Year of publication. Interval search with “-”
rft Text from the references of a document (for phrases use “...”)
rn Reviewer ID
rv Name or ID of the reviewer
se Serial ID
si swMATH ID of software referred to in a document
so Bibliographical source, e.g., serial title, volume/issue number, page range, year of publication, ISBN, etc.
st State: is cited (st:c), has references (st:r), has single author (st:s)
sw Name of software referred to in a document
ti Title of the document
ut Keywords

Operators

a & bLogical and (default)
a | bLogical or
!abLogical not
abc*Right wildcard
ab cPhrase
(ab c)Term grouping

See also ourGeneral Help.

Local behaviour of Airy processes.(English)Zbl 1405.82029

Summary: The Airy processes describe limit fluctuations in a wide range of growth models, where each particular Airy process depends on the geometry of the initial profile. We show how the coupling method, developed in the last-passage percolation context, can be used to prove existence of a continuous version and local convergence to Brownian motion. By using similar arguments, we further extend these results to a two parameter limit fluctuation process (Airy sheet).

MSC:

82C43 Time-dependent percolation in statistical mechanics
60J65 Brownian motion
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
35Q82 PDEs in connection with statistical mechanics
60K37 Processes in random environments

Cite

References:

[1]Amir, G.; Corwin, I.; Quastel, J., Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions, Commun. Pure Appl. Math., 64, 466-537, (2011) ·Zbl 1222.82070 ·doi:10.1002/cpa.20347
[2]Balázs, M.; Cator, EA; Seppäläinen, T., Cube root fluctuations for the corner growth model associated to the exclusion process, Electron. J. Probab., 11, 1094-1132, (2006) ·Zbl 1139.60046 ·doi:10.1214/EJP.v11-366
[3]Borodin, A.; Ferrari, PL, Large time asymptotics of growth models on space-like paths I: PushASEP, Electron. J. Probab., 13, 1380-1418, (2008) ·Zbl 1187.82084 ·doi:10.1214/EJP.v13-541
[4]Borodin, A.; Ferrari, PL; Prähofer, M.; Sasamoto, T., Fluctuation properties of the TASEP with periodic initial configuration, J. Stat. Phys., 129, 1055-1080, (2007) ·Zbl 1136.82028 ·doi:10.1007/s10955-007-9383-0
[5]Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968) ·Zbl 0172.21201
[6]Cator, EA; Groeneboom, P., Second class particles and cube root asymptotics for Hammersley’s process, Ann. Probab., 34, 1273-1295, (2006) ·Zbl 1101.60076 ·doi:10.1214/009117906000000089
[7]Cator, EA; Pimentel, LPR, Busemann functions and the speed of a second class particle in the rarefaction fan, Ann. Probab., 41, 2401-2425, (2013) ·Zbl 1276.60108 ·doi:10.1214/11-AOP709
[8]Cator, EA; Pimentel, LPR, On the local fluctuations of last-passage percolation models, Stoch. Process. Appl., 125, 538-551, (2016) ·Zbl 1326.60134 ·doi:10.1016/j.spa.2014.08.009
[9]Chhita, S., Ferrari, P.L., Spohn, H.: Limit distributions for KPZ growth models with spatially homogeneous random initial conditions. arXiv:1611.06690 (2016) ·Zbl 1397.82040
[10]Corwin, I.; Hammond, A., Brownian Gibbs property for Airy line ensembles, Invent. Math., 195, 441-508, (2014) ·Zbl 1459.82117 ·doi:10.1007/s00222-013-0462-3
[11]Corwin, I.; Quastel, J.; Remenik, D., Renormalization fixed point of the KPZ universality class, J. Stat. Phys., 160, 815-834, (2015) ·Zbl 1327.82064 ·doi:10.1007/s10955-015-1243-8
[12]Corwin, I.; Liu, Z.; Wang, D., Fluctuations of TASEP and LPP with general initial data, Ann. Appl. Probab., 26, 2030-2082, (2016) ·Zbl 1356.82013 ·doi:10.1214/15-AAP1139
[13]Hägg, J., Local fluctuations in the Airy and discrete PNG process, Ann. Probab., 36, 1059-1092, (2008) ·Zbl 1142.60025 ·doi:10.1214/07-AOP353
[14]Johansson, K., Shape fluctuations and random matrices, Commun. Math. Phys., 209, 437-476, (2000) ·Zbl 0969.15008 ·doi:10.1007/s002200050027
[15]Johansson, K., Discrete polynuclear growth and determinantal processes, Commun. Math. Phys., 242, 277-329, (2003) ·Zbl 1031.60084 ·doi:10.1007/s00220-003-0945-y
[16]Kardar, M.; Parisi, G.; Zhang, Y-C, Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56, 889-892, (1986) ·Zbl 1101.82329 ·doi:10.1103/PhysRevLett.56.889
[17]Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point. arXiv:1701.00018 (2016)
[18]Neuhaus, G., On weak convergence of stochastic processes with multidimensional time parameter, Ann. Math. Stat., 42, 1285-1295, (1971) ·Zbl 0222.60013 ·doi:10.1214/aoms/1177693241
[19]Pimentel, LPR, On the location of the maximum of a continuous stochastic process, J. Appl. Probab., 51, 152-161, (2014) ·Zbl 1305.60029 ·doi:10.1239/jap/1395771420
[20]Pimentel, LPR, Duality between coalescence times and exit points in last-passage percolation models, Ann. Probab., 44, 3187-3206, (2016) ·Zbl 1361.60095 ·doi:10.1214/15-AOP1044
[21]Pimentel, L.P.R.: Ergodicity of the KPZ fixed point. arXiv:1708.06006 (2017)
[22]Prähofer, M.; Spohn, H., Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys., 108, 1076-1106, (2002) ·Zbl 1025.82010 ·doi:10.1023/A:1019791415147
[23]Quastel, J.; Remenik, D., Local behavior and hitting probabilities of the Airy1 process, Probab. Theory. Relat. Fields, 157, 605-634, (2013) ·Zbl 1285.60095 ·doi:10.1007/s00440-012-0466-8
[24]Resnick, S.: Adventures in Stochastic Processes. Birkhäuser, Basel (1992) ·Zbl 0762.60002
[25]Sasamoto, T., Spatial correlations of the 1D KPZ surface on a flat substrate, J. Phys. A, 38, l549, (2007) ·doi:10.1088/0305-4470/38/33/L01
[26]Straf, M.: Weak convergence of stochastic processes with several parameters. In: Proc. Sixth Berkeley Symp. on Math. Statist. and Prob. (vol. 2, pp. 187-221). Univ. of Calif. Press, Berkeley, CA (1972) ·Zbl 0255.60019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.
© 2025FIZ Karlsruhe GmbHPrivacy PolicyLegal NoticesTerms & Conditions
  • Mastodon logo
 (opens in new tab)

[8]ページ先頭

©2009-2025 Movatter.jp